|
|
Line 1: |
Line 1: |
− | An algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h0472301.png" /> with involution (cf. [[Involution algebra|Involution algebra]]) over the field of complex numbers, equipped with a non-degenerate scalar product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h0472302.png" />, for which the following axioms are satisfied: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h0472303.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h0472304.png" />; 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h0472305.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h0472306.png" />; 3) for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h0472307.png" /> the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h0472308.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h0472309.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723010.png" /> is continuous; and 4) the set of elements of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723012.png" />, is everywhere dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723013.png" />. Examples of Hilbert algebras include the algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723014.png" /> (with respect to convolution), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723015.png" /> is a compact topological group, and the algebra of Hilbert–Schmidt operators (cf. [[Hilbert–Schmidt operator|Hilbert–Schmidt operator]]) on a given Hilbert space. | + | {{TEX|done}} |
| + | An algebra $A$ with involution (cf. [[Involution algebra|Involution algebra]]) over the field of complex numbers, equipped with a non-degenerate scalar product $(|)$, for which the following axioms are satisfied: 1) $(x|y)=(y^*|x^*)$ for all $x,y\in A$; 2) $(xy|z)=(y|x^*z)$ for all $x,y,z\in A$; 3) for all $x\in A$ the mapping $y\to xy$ of $A$ into $A$ is continuous; and 4) the set of elements of the form $xy$, $x,y\in A$, is everywhere dense in $A$. Examples of Hilbert algebras include the algebras $L_2(G)$ (with respect to convolution), where $G$ is a compact topological group, and the algebra of Hilbert–Schmidt operators (cf. [[Hilbert–Schmidt operator|Hilbert–Schmidt operator]]) on a given Hilbert space. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723016.png" /> be a Hilbert algebra, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723017.png" /> be the [[Hilbert space|Hilbert space]] completion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723018.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723020.png" /> be the elements of the algebra of bounded linear operators on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723021.png" /> which are the continuous extensions of the multiplications from the left and from the right by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723022.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723023.png" />. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723024.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723025.png" />) is a non-degenerate representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723026.png" /> (respectively, of the [[opposite algebra]]), on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723027.png" />. The weak closure of the family of operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723028.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723029.png" />) is a [[Von Neumann algebra|von Neumann algebra]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723030.png" />; it is called the left (respectively, right) von Neumann algebra of the given Hilbert algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723031.png" /> and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723032.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723033.png" />); <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723035.png" /> are mutual commutators; they are semi-finite von Neumann algebras. Any Hilbert algebra unambiguously determines some specific normal semi-finite trace on the von Neumann algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723036.png" /> (cf. [[Trace on a C*-algebra|Trace on a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723037.png" />-algebra]]). Conversely, if a von Neumann algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723038.png" /> and a specific semi-finite trace on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723039.png" /> are given, then it is possible to construct a Hilbert algebra such that the left von Neumann algebra of this Hilbert algebra is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723040.png" /> and the trace determined by the Hilbert algebra on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047230/h04723041.png" /> coincides with the initial one [[#References|[1]]]. Thus, a Hilbert algebra is a means of studying semi-finite von Neumann algebras and traces on them; a certain extension of the concept of a Hilbert algebra makes it possible to study by similar means von Neumann algebras that are not necessarily semi-finite [[#References|[2]]]. | + | Let $A$ be a Hilbert algebra, let $H$ be the [[Hilbert space|Hilbert space]] completion of $A$ and let $U_x$ and $V_x$ be the elements of the algebra of bounded linear operators on $H$ which are the continuous extensions of the multiplications from the left and from the right by $x$ in $A$. The mapping $x\to U_x$ (respectively, $x\to V_x$) is a non-degenerate representation of $A$ (respectively, of the [[opposite algebra]]), on $H$. The weak closure of the family of operators $U_x$ (respectively, $V_x$) is a [[Von Neumann algebra|von Neumann algebra]] in $H$; it is called the left (respectively, right) von Neumann algebra of the given Hilbert algebra $A$ and is denoted by $U(A)$ (respectively, $V(A)$); $U(A)$ and $V(A)$ are mutual commutators; they are semi-finite von Neumann algebras. Any Hilbert algebra unambiguously determines some specific normal semi-finite trace on the von Neumann algebra $U(A)$ (cf. [[Trace on a C*-algebra|Trace on a $C^*$-algebra]]). Conversely, if a von Neumann algebra $\mathfrak A$ and a specific semi-finite trace on $\mathfrak A$ are given, then it is possible to construct a Hilbert algebra such that the left von Neumann algebra of this Hilbert algebra is isomorphic to $\mathfrak A$ and the trace determined by the Hilbert algebra on $\mathfrak A$ coincides with the initial one [[#References|[1]]]. Thus, a Hilbert algebra is a means of studying semi-finite von Neumann algebras and traces on them; a certain extension of the concept of a Hilbert algebra makes it possible to study by similar means von Neumann algebras that are not necessarily semi-finite [[#References|[2]]]. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Dixmier, "Les algèbres d'opérateurs dans l'espace hilbertien: algèbres de von Neumann" , Gauthier-Villars (1957)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Takesaki, "Tomita's theory of modular Hilbert algebras and its applications" , ''Lect. notes in math.'' , '''128''' , Springer (1970)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Dixmier, "Les algèbres d'opérateurs dans l'espace hilbertien: algèbres de von Neumann" , Gauthier-Villars (1957)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Takesaki, "Tomita's theory of modular Hilbert algebras and its applications" , ''Lect. notes in math.'' , '''128''' , Springer (1970)</TD></TR></table> |
Latest revision as of 18:32, 28 June 2015
An algebra $A$ with involution (cf. Involution algebra) over the field of complex numbers, equipped with a non-degenerate scalar product $(|)$, for which the following axioms are satisfied: 1) $(x|y)=(y^*|x^*)$ for all $x,y\in A$; 2) $(xy|z)=(y|x^*z)$ for all $x,y,z\in A$; 3) for all $x\in A$ the mapping $y\to xy$ of $A$ into $A$ is continuous; and 4) the set of elements of the form $xy$, $x,y\in A$, is everywhere dense in $A$. Examples of Hilbert algebras include the algebras $L_2(G)$ (with respect to convolution), where $G$ is a compact topological group, and the algebra of Hilbert–Schmidt operators (cf. Hilbert–Schmidt operator) on a given Hilbert space.
Let $A$ be a Hilbert algebra, let $H$ be the Hilbert space completion of $A$ and let $U_x$ and $V_x$ be the elements of the algebra of bounded linear operators on $H$ which are the continuous extensions of the multiplications from the left and from the right by $x$ in $A$. The mapping $x\to U_x$ (respectively, $x\to V_x$) is a non-degenerate representation of $A$ (respectively, of the opposite algebra), on $H$. The weak closure of the family of operators $U_x$ (respectively, $V_x$) is a von Neumann algebra in $H$; it is called the left (respectively, right) von Neumann algebra of the given Hilbert algebra $A$ and is denoted by $U(A)$ (respectively, $V(A)$); $U(A)$ and $V(A)$ are mutual commutators; they are semi-finite von Neumann algebras. Any Hilbert algebra unambiguously determines some specific normal semi-finite trace on the von Neumann algebra $U(A)$ (cf. Trace on a $C^*$-algebra). Conversely, if a von Neumann algebra $\mathfrak A$ and a specific semi-finite trace on $\mathfrak A$ are given, then it is possible to construct a Hilbert algebra such that the left von Neumann algebra of this Hilbert algebra is isomorphic to $\mathfrak A$ and the trace determined by the Hilbert algebra on $\mathfrak A$ coincides with the initial one [1]. Thus, a Hilbert algebra is a means of studying semi-finite von Neumann algebras and traces on them; a certain extension of the concept of a Hilbert algebra makes it possible to study by similar means von Neumann algebras that are not necessarily semi-finite [2].
References
[1] | J. Dixmier, "Les algèbres d'opérateurs dans l'espace hilbertien: algèbres de von Neumann" , Gauthier-Villars (1957) |
[2] | M. Takesaki, "Tomita's theory of modular Hilbert algebras and its applications" , Lect. notes in math. , 128 , Springer (1970) |
How to Cite This Entry:
Hilbert algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hilbert_algebra&oldid=35160
This article was adapted from an original article by A.I. Shtern (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article