|
|
(2 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
− | ''of degree (order) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s0862902.png" /> over a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s0862903.png" />''
| |
| | | |
− | The subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s0862904.png" /> of the [[General linear group|general linear group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s0862905.png" /> which is the kernel of a determinant homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s0862906.png" />. The structure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s0862907.png" /> depends on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s0862908.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s0862909.png" /> and the type of determinant defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629010.png" />. There are three main types of determinants of importance here: the ordinary determinant in the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629011.png" /> is a commutative ring, the non-commutative Dieudonné determinant (cf. [[Determinant|Determinant]]) when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629012.png" /> is a division ring (see [[#References|[1]]]), and the reduced norm homomorphism for a division ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629013.png" /> that is finite dimensional over its centre (see [[#References|[2]]]).
| + | {{MSC|20Gxx|19-XX,11E57,20G15}} |
| + | {{TEX|done}} |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629014.png" /> has the following noteworthy subgroups: the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629015.png" /> generated by the elementary matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629016.png" /> (see [[Algebraic K-theory|Algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629017.png" />-theory]]) and, for every two-sided ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629018.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629019.png" />, the congruence subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629020.png" /> and the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629021.png" /> which is the normal subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629022.png" /> generated by the matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629023.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629024.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629025.png" /> and let
| + | The special linear group |
| + | ''of degree (order) $\def\SL{\textrm{SL}}\def\GL{\textrm{GL}} n$ over a ring $R$'' |
| + | is the subgroup $\SL(n,R)$ of the |
| + | [[General linear group|general linear group]] $\GL(n,R)$ which is the kernel of a determinant homomorphism $\det_n$. The structure of $\SL(n,R)$ depends on $R$, $n$ and the type of determinant defined on $\GL(n,R)$. There are three main types of determinants of importance here: the ordinary determinant in the case when $R$ is a commutative ring, the non-commutative Dieudonné determinant (cf. |
| + | [[Determinant|Determinant]]) when $R$ is a division ring (see |
| + | {{Cite|Ar}}), and the [[Reduced norm|reduced norm homomorphism]] for a division ring $R$ that is finite dimensional over its centre (see |
| + | {{Cite|Ba}}). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629026.png" /></td> </tr></table>
| + | $\SL(n,R)$ has the following noteworthy subgroups: the group $\def\E{\textrm{E}}\E(n,R)$ generated by the [[Elementary matrix|elementary matrices]] $\def\l{\lambda} e_{ij}^\l$ (see |
| + | [[Algebraic K-theory|Algebraic $K$-theory]]) and, for every two-sided ideal $q$ of $R$, the congruence subgroup $\SL(n,R,q)$ and the group $\def\E{\textrm{E}}\E(n,R,q)$ which is the normal subgroup of $\E(n,R)$ generated by the matrices $e_{ij}^\l$ for $\l\in q$. Let $A\in \E(n,R,q)$ and let |
| | | |
− | be the imbedding of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629027.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629028.png" />. Then passage to the direct limit gives the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629029.png" />. The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629030.png" /> is defined in a similar way. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629031.png" /> one writes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629033.png" /> instead of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629035.png" />, respectively. The latter is called the stable special linear group of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629036.png" />. The normal subgroup structure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629037.png" /> is closely connected with the structure of the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629038.png" />: A subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629039.png" /> is normal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629040.png" /> if and only if, for some (unique) two-sided ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629041.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629042.png" />, the following inclusions hold: | + | $$A \mapsto \begin{pmatrix}A & 0\\ 0 & 1\end{pmatrix}$$ |
| + | be the imbedding of $\E(n,R,q)$ into $\E(n+1,R,q)$. Then passage to the direct limit gives the group $\E(R,q)$. The group $\SL(R,q)$ is defined in a similar way. When $q=R$ one writes $\E(R)$ and $\SL(R)$ instead of $\E(R,R)$ and $\SL(R,R)$, respectively. The latter is called the stable special linear group of the ring $R$. The normal subgroup structure of $\SL(R)$ is closely connected with the structure of the groups $\SL(n,R)$: A subgroup $H$ is normal in $\SL(R)$ if and only if, for some (unique) two-sided ideal $q$ of $R$, the following inclusions hold: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629043.png" /></td> </tr></table>
| + | $$\E(R,q)\subset H\subset \SL(R,q)$$ |
| + | Thus, the Abelian groups $\def\SK{\textrm{SK}}\SK_1(R,q) = \SL(R,q)/\E(R,q)$ classify the normal subgroups of $\SL(R)$. The group $\SK_1(R) = \SK(R,R)$ is called the reduced Whitehead group of $R$. A satisfactory description of the normal subgroup structure of $\SL(n,R)$ for an arbitrary ring $R$ uses a condition involving the |
| + | [[Stable rank|stable rank]] of the ideal $q$ ($\def\str{\textrm{str}\;}\str q$). Namely, if $n\ge \str q +1$, then there is an isomorphism |
| | | |
− | Thus, the Abelian groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629044.png" /> classify the normal subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629045.png" />. The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629046.png" /> is called the reduced Whitehead group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629047.png" />. A satisfactory description of the normal subgroup structure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629048.png" /> for an arbitrary ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629049.png" /> uses a condition involving the [[Stable rank|stable rank]] of the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629050.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629051.png" />). Namely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629052.png" />, then there is an isomorphism
| + | $$\SL(n,R,q)/\E(nR,q) \simeq \SK_1(R,q)$$ |
| + | In addition, if the conditions $n\ge \str R + 1 $, $n\ge 3$ hold, then for every normal subgroup $H$ of $\SL(n,R)$ the inclusions |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629053.png" /></td> </tr></table>
| + | $$\E(n,R,q)\subset H\subset \SL'(n,R,q)$$ |
| + | hold for an appropriate $q$, where $\SL'(nR,q) = \GL'(n,R,q)\cap \SL(n,R)$, and $\GL'(n,R,q)$ is the pre-image of the centre of $\GL(n,R/q)$ in $\GL(n,R)$. For certain special rings definitive results are known (see |
| + | {{Cite|Ba}}, |
| + | {{Cite|Su}}, for example). |
| | | |
− | In addition, if the conditions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629054.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629055.png" /> hold, then for every normal subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629056.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629057.png" /> the inclusions | + | In the case of the non-commutative Dieudonné determinant (so that $R$ is a division ring), the results are exhaustive. The groups $\SL(n,R)$ and $E(n,R)$ coincide. $\SL(n,R)$ is the commutator subgroup of $\GL(n,R)$, except in the case of $\SL(2,\F_2)$ (where $\F_q$ denotes the field of $q$ elements). The centre $Z_n$ of $\SL(n,R)$ consists of the scalar matrices $\def\diag{\textrm{diag}}\def\a{\alpha} \diag(\a,\dots,\a)$, where $\a$ is an element of the centre of $R$ and $\a^n\in[R^*,R^*]$, $[R^*,R^*]$ being the commutator subgroup of the multiplicative group $R^*$ of the division ring $R$. The quotient group $SL(n,R)/Z_n$ is simple except when $n=2$ and $R=\F_2,\F_3$. When $n=2$, $\SL(2,\F_2) = \SL(2,\F_2)/Z_2$ and $\SL(2,\F_2)$ is isomorphic to the |
| + | [[Symmetric group|symmetric group]] $S_3$ of degree 3, while $\SL(2,\F_3)/Z_2$ is isomorphic to the |
| + | [[Alternating group|alternating group]] $A_4$ of degree 4. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629058.png" /></td> </tr></table>
| + | If $\det_n$ is a reduced norm homomorphism, then |
− | | |
− | hold for an appropriate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629059.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629060.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629061.png" /> is the pre-image of the centre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629062.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629063.png" />. For certain special rings definitive results are known (see [[#References|[2]]], [[#References|[4]]], for example).
| |
− | | |
− | In the case of the non-commutative Dieudonné determinant (so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629064.png" /> is a division ring), the results are exhaustive. The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629065.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629066.png" /> coincide. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629067.png" /> is the commutator subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629068.png" />, except in the case of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629069.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629070.png" /> denotes the field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629071.png" /> elements). The centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629072.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629073.png" /> consists of the scalar matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629074.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629075.png" /> is an element of the centre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629076.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629077.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629078.png" /> being the commutator subgroup of the multiplicative group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629079.png" /> of the division ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629080.png" />. The quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629081.png" /> is simple except when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629082.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629083.png" />. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629084.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629085.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629086.png" /> is isomorphic to the [[Symmetric group|symmetric group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629087.png" /> of degree 3, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629088.png" /> is isomorphic to the [[Alternating group|alternating group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629089.png" /> of degree 4.
| |
− | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629090.png" /> is a reduced norm homomorphism, then | |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629091.png" /></td> </tr></table>
| |
| | | |
| + | $$\SL(n,R)/\E(n,R) \simeq \SK_1(R)$$ |
| and | | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629092.png" /></td> </tr></table>
| + | $$\SK_1(R)\simeq \SL(1,R)/[R^*,R^*],$$ |
− | | + | so that the group $\SK_1(R)$ is trivial when $R$ is a field. The conjecture that $\SK_1(R) = \{0\}$ for any division ring $R$ stood for a long time. However, in 1975 it was shown that this is not true (see |
− | so that the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629093.png" /> is trivial when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629094.png" /> is a field. The conjecture that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629095.png" /> for any division ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629096.png" /> stood for a long time. However, in 1975 it was shown that this is not true (see [[#References|[5]]]). The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629097.png" /> play an important role in algebraic geometry (see [[#References|[6]]], [[#References|[7]]]). There are also generalizations of the reduced norm homomorphism, which have stimulated a series of new investigations into special linear groups. | + | {{Cite|Pl}}). The groups $\SK_1(R)$ play an important role in algebraic geometry (see |
− | | + | {{Cite|Pl2}}, |
− | ====References====
| + | {{Cite|Pl3}}). There are also generalizations of the reduced norm homomorphism, which have stimulated a series of new investigations into special linear groups. |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Artin, "Geometric algebra" , Interscience (1957)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Bass, "Algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629098.png" />-theory" , Benjamin (1968)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.W. Milnor, "Introduction to algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s08629099.png" />-theory" , Princeton Univ. Press (1971)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.A. Suslin, "On the structure of the special linear group over polynomial rings" ''Math. USSR Izv.'' , '''11''' (1977) pp. 211–238 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''41''' : 2 (1977) pp. 235–252</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> V.P. Platonov, "A problem of Tannaka–Artin and groups of projective conorms" ''Soviet Math. Dokl.'' , '''16''' (1975) pp. 781–786 ''Dokl. Akad. Nauk SSSR'' , '''222''' : 2 (1975) pp. 1299–1302</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> V.P. Platonov, "The Tannaka–Artin problem and reduced <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s086290100.png" />-theory" ''Math. USSR Izv.'' , '''10''' (1976) pp. 211–243 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''40''' : 2 (1976) pp. 227–261</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> V.P. Platonov, "Algebraic groups and reduced <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s086290101.png" />-theory" , ''Proc. Internat. Congress Mathematicians (Helsinki, 1978)'' , '''1''' , Acad. Sci. Fennicae (1980) pp. 311–323</TD></TR></table>
| |
− | | |
− | | |
− | | |
− | ====Comments====
| |
− | For the reduced norm homomorphism see [[Reduced norm|Reduced norm]].
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.J. Hahn, O.T. O'Meara, "The classical groups and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s086/s086290/s086290102.png" />-theory" , Springer (1989)</TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Ar}}||valign="top"| E. Artin, "Geometric algebra", Interscience (1957) {{MR|0082463}} {{ZBL|0077.02101}} |
| + | |- |
| + | |valign="top"|{{Ref|Ba}}||valign="top"| H. Bass, "Algebraic K-theory", Benjamin (1968) {{MR|0249491}} {{ZBL|0174.30302}} |
| + | |- |
| + | |valign="top"|{{Ref|HaOM}}||valign="top"| A.J. Hahn, O.T. O'Meara, "The classical groups and K-theory", Springer (1989) {{MR|1007302}} {{ZBL|0683.20033}} |
| + | |- |
| + | |valign="top"|{{Ref|Mi}}||valign="top"| J.W. Milnor, "Introduction to algebraic K-theory", Princeton Univ. Press (1971) {{MR|0349811}} {{ZBL|0237.18005}} |
| + | |- |
| + | |valign="top"|{{Ref|Pl}}||valign="top"| V.P. Platonov, "A problem of Tannaka–Artin and groups of projective conorms" ''Soviet Math. Dokl.'', '''16''' (1975) pp. 781–786 ''Dokl. Akad. Nauk SSSR'', '''222''' : 2 (1975) pp. 1299–1302 {{ZBL|0338.16004}} |
| + | |- |
| + | |valign="top"|{{Ref|Pl2}}||valign="top"| V.P. Platonov, "The Tannaka–Artin problem and reduced K-theory" ''Math. USSR Izv.'', '''10''' (1976) pp. 211–243 ''Izv. Akad. Nauk SSSR Ser. Mat.'', '''40''' : 2 (1976) pp. 227–261 {{MR|0424872}} {{MR|0407082}} |
| + | |- |
| + | |valign="top"|{{Ref|Su}}||valign="top"| A.A. Suslin, "On the structure of the special linear group over polynomial rings" ''Math. USSR Izv.'', '''11''' (1977) pp. 211–238 ''Izv. Akad. Nauk SSSR Ser. Mat.'', '''41''' : 2 (1977) pp. 235–252 {{ZBL|0378.13002}} {{ZBL|0354.13009}} |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 20Gxx Secondary: 19-XX11E5720G15 [MSN][ZBL]
The special linear group
of degree (order) $\def\SL{\textrm{SL}}\def\GL{\textrm{GL}} n$ over a ring $R$
is the subgroup $\SL(n,R)$ of the
general linear group $\GL(n,R)$ which is the kernel of a determinant homomorphism $\det_n$. The structure of $\SL(n,R)$ depends on $R$, $n$ and the type of determinant defined on $\GL(n,R)$. There are three main types of determinants of importance here: the ordinary determinant in the case when $R$ is a commutative ring, the non-commutative Dieudonné determinant (cf.
Determinant) when $R$ is a division ring (see
[Ar]), and the reduced norm homomorphism for a division ring $R$ that is finite dimensional over its centre (see
[Ba]).
$\SL(n,R)$ has the following noteworthy subgroups: the group $\def\E{\textrm{E}}\E(n,R)$ generated by the elementary matrices $\def\l{\lambda} e_{ij}^\l$ (see
Algebraic $K$-theory) and, for every two-sided ideal $q$ of $R$, the congruence subgroup $\SL(n,R,q)$ and the group $\def\E{\textrm{E}}\E(n,R,q)$ which is the normal subgroup of $\E(n,R)$ generated by the matrices $e_{ij}^\l$ for $\l\in q$. Let $A\in \E(n,R,q)$ and let
$$A \mapsto \begin{pmatrix}A & 0\\ 0 & 1\end{pmatrix}$$
be the imbedding of $\E(n,R,q)$ into $\E(n+1,R,q)$. Then passage to the direct limit gives the group $\E(R,q)$. The group $\SL(R,q)$ is defined in a similar way. When $q=R$ one writes $\E(R)$ and $\SL(R)$ instead of $\E(R,R)$ and $\SL(R,R)$, respectively. The latter is called the stable special linear group of the ring $R$. The normal subgroup structure of $\SL(R)$ is closely connected with the structure of the groups $\SL(n,R)$: A subgroup $H$ is normal in $\SL(R)$ if and only if, for some (unique) two-sided ideal $q$ of $R$, the following inclusions hold:
$$\E(R,q)\subset H\subset \SL(R,q)$$
Thus, the Abelian groups $\def\SK{\textrm{SK}}\SK_1(R,q) = \SL(R,q)/\E(R,q)$ classify the normal subgroups of $\SL(R)$. The group $\SK_1(R) = \SK(R,R)$ is called the reduced Whitehead group of $R$. A satisfactory description of the normal subgroup structure of $\SL(n,R)$ for an arbitrary ring $R$ uses a condition involving the
stable rank of the ideal $q$ ($\def\str{\textrm{str}\;}\str q$). Namely, if $n\ge \str q +1$, then there is an isomorphism
$$\SL(n,R,q)/\E(nR,q) \simeq \SK_1(R,q)$$
In addition, if the conditions $n\ge \str R + 1 $, $n\ge 3$ hold, then for every normal subgroup $H$ of $\SL(n,R)$ the inclusions
$$\E(n,R,q)\subset H\subset \SL'(n,R,q)$$
hold for an appropriate $q$, where $\SL'(nR,q) = \GL'(n,R,q)\cap \SL(n,R)$, and $\GL'(n,R,q)$ is the pre-image of the centre of $\GL(n,R/q)$ in $\GL(n,R)$. For certain special rings definitive results are known (see
[Ba],
[Su], for example).
In the case of the non-commutative Dieudonné determinant (so that $R$ is a division ring), the results are exhaustive. The groups $\SL(n,R)$ and $E(n,R)$ coincide. $\SL(n,R)$ is the commutator subgroup of $\GL(n,R)$, except in the case of $\SL(2,\F_2)$ (where $\F_q$ denotes the field of $q$ elements). The centre $Z_n$ of $\SL(n,R)$ consists of the scalar matrices $\def\diag{\textrm{diag}}\def\a{\alpha} \diag(\a,\dots,\a)$, where $\a$ is an element of the centre of $R$ and $\a^n\in[R^*,R^*]$, $[R^*,R^*]$ being the commutator subgroup of the multiplicative group $R^*$ of the division ring $R$. The quotient group $SL(n,R)/Z_n$ is simple except when $n=2$ and $R=\F_2,\F_3$. When $n=2$, $\SL(2,\F_2) = \SL(2,\F_2)/Z_2$ and $\SL(2,\F_2)$ is isomorphic to the
symmetric group $S_3$ of degree 3, while $\SL(2,\F_3)/Z_2$ is isomorphic to the
alternating group $A_4$ of degree 4.
If $\det_n$ is a reduced norm homomorphism, then
$$\SL(n,R)/\E(n,R) \simeq \SK_1(R)$$
and
$$\SK_1(R)\simeq \SL(1,R)/[R^*,R^*],$$
so that the group $\SK_1(R)$ is trivial when $R$ is a field. The conjecture that $\SK_1(R) = \{0\}$ for any division ring $R$ stood for a long time. However, in 1975 it was shown that this is not true (see
[Pl]). The groups $\SK_1(R)$ play an important role in algebraic geometry (see
[Pl2],
[Pl3]). There are also generalizations of the reduced norm homomorphism, which have stimulated a series of new investigations into special linear groups.
References
[Ar] |
E. Artin, "Geometric algebra", Interscience (1957) MR0082463 Zbl 0077.02101
|
[Ba] |
H. Bass, "Algebraic K-theory", Benjamin (1968) MR0249491 Zbl 0174.30302
|
[HaOM] |
A.J. Hahn, O.T. O'Meara, "The classical groups and K-theory", Springer (1989) MR1007302 Zbl 0683.20033
|
[Mi] |
J.W. Milnor, "Introduction to algebraic K-theory", Princeton Univ. Press (1971) MR0349811 Zbl 0237.18005
|
[Pl] |
V.P. Platonov, "A problem of Tannaka–Artin and groups of projective conorms" Soviet Math. Dokl., 16 (1975) pp. 781–786 Dokl. Akad. Nauk SSSR, 222 : 2 (1975) pp. 1299–1302 Zbl 0338.16004
|
[Pl2] |
V.P. Platonov, "The Tannaka–Artin problem and reduced K-theory" Math. USSR Izv., 10 (1976) pp. 211–243 Izv. Akad. Nauk SSSR Ser. Mat., 40 : 2 (1976) pp. 227–261 MR0424872 MR0407082
|
[Su] |
A.A. Suslin, "On the structure of the special linear group over polynomial rings" Math. USSR Izv., 11 (1977) pp. 211–238 Izv. Akad. Nauk SSSR Ser. Mat., 41 : 2 (1977) pp. 235–252 Zbl 0378.13002 Zbl 0354.13009
|