Namespaces
Variants
Actions

Difference between revisions of "Multiplicative group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(MSC 12E15)
 
Line 1: Line 1:
 +
{{TEX|done}}{{MSC|12E15|}}
 +
 
''of a skew-field''
 
''of a skew-field''
  
Line 9: Line 11:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S.A. Amitsur,  "Finite subgroups of division rings"  ''Trans. Amer. Math. Soc.'' , '''80'''  (1955)  pp. 361–396</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.I. Lichtman,  "Free subgroups in linear groups over some skew fields"  ''J. of Algebra'' , '''105'''  (1987)  pp. 1–28</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  W.R. Scott,  "Group theory" , Prentice-Hall  (1964)  pp. Chapt. 14, p. 426</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  S.A. Amitsur,  "Finite subgroups of division rings"  ''Trans. Amer. Math. Soc.'' , '''80'''  (1955)  pp. 361–396</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  A.I. Lichtman,  "Free subgroups in linear groups over some skew fields"  ''J. of Algebra'' , '''105'''  (1987)  pp. 1–28</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top">  W.R. Scott,  "Group theory" , Prentice-Hall  (1964)  pp. Chapt. 14, p. 426</TD></TR>
 +
</table>

Latest revision as of 20:48, 21 December 2014

2020 Mathematics Subject Classification: Primary: 12E15 [MSN][ZBL]

of a skew-field

The group of all elements of the given skew-field except the zero element and with the operation of multiplication in the skew-field. The multiplicative group of a field is Abelian.


Comments

The finite multiplicative subgroups of skew-fields of finite non-zero characteristic are cyclic, and this is not the case in characteristic zero. There are only a finite number of even groups and an infinite number of odd groups, and the minimal order is 63. The classification is given in [a1]. There exists a similar problem for proving a kind of Tits alternative: Any finite normal subgroup of the multiplicative group of a skew-field contains a free non-cyclic group or is a finitely-solvable group and has an extension to a linear group over a skew-field. Some cases are known, e.g., [a2].

References

[a1] S.A. Amitsur, "Finite subgroups of division rings" Trans. Amer. Math. Soc. , 80 (1955) pp. 361–396
[a2] A.I. Lichtman, "Free subgroups in linear groups over some skew fields" J. of Algebra , 105 (1987) pp. 1–28
[a3] W.R. Scott, "Group theory" , Prentice-Hall (1964) pp. Chapt. 14, p. 426
How to Cite This Entry:
Multiplicative group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multiplicative_group&oldid=18214
This article was adapted from an original article by O.A. Ivanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article