|
|
(2 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | ''modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p0742302.png" />''
| + | {{TEX|done}}{{MSC|11A15}} |
| | | |
− | An integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p0742303.png" /> for which the [[Congruence|congruence]]
| + | ''modulo $m$'' |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p0742304.png" /></td> </tr></table>
| + | An integer $a$ for which the [[congruence]] |
| + | $$ |
| + | x^n \equiv a \pmod m |
| + | $$ |
| + | is solvable for a given integer $n > 1$. The number $a$ is called a residue of degree $n$ modulo $m$. If this congruence is not solvable, then $a$ is called a non-residue of degree $n$ modulo $m$. When $n=2$, the power residues and non-residues are said to be quadratic, when $n=3$, cubic, and when $n=4$, biquadratic or quartic. |
| | | |
− | is solvable for a given integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p0742305.png" />. The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p0742306.png" /> is called a residue of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p0742309.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423010.png" />. If this congruence is not solvable, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423011.png" /> is called a non-residue of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423014.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423015.png" />. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423016.png" />, the power residues and non-residues are said to be quadratic, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423017.png" />, cubic, and when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423018.png" />, biquadratic.
| + | In the case of a prime modulus $p$, the question of the solvability of the congruence $x^n \equiv a \pmod p$ can be answered by using the [[Euler criterion]]: If $q = \mathrm{hcf}(n,p-1)$, then for the congruence $x^n \equiv a \pmod p$ to be solvable it is necessary and sufficient that |
| + | $$ |
| + | a^q \equiv 1 \pmod p\ . |
| + | $$ |
| | | |
− | In the case of a prime modulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423019.png" />, the question of the solvability of the congruence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423020.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423021.png" />) can be answered by using Euler's test: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423022.png" />, then for the congruence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423023.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423024.png" />) to be solvable it is necessary and sufficient that
| + | When this condition is fulfilled, the original congruence has $q$ different solutions modulo $p$. It follows from this test that among the numbers $1,\ldots,p-1$ there are exactly $(p-1)/q$ residues and $(q-1)(p-1)/q$ non-residues of degree $n$ modulo $p$. See [[Distribution of power residues and non-residues|Distribution of power residues and non-residues]]. |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423025.png" /></td> </tr></table>
| |
− | | |
− | When this condition is fulfilled, the original congruence has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423026.png" /> different solutions modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423027.png" />. It follows from this test that among the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423028.png" /> there are exactly <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423029.png" /> residues and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423030.png" /> non-residues of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423031.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423032.png" />. See [[Distribution of power residues and non-residues|Distribution of power residues and non-residues]]. | |
| | | |
| | | |
| | | |
| ====Comments==== | | ====Comments==== |
− | As in the case of quadratic residues one defines a power-residue symbol. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423033.png" /> be a number field containing the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423034.png" />-th roots of unity. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423035.png" /> be the ring of integers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423036.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423037.png" /> be a prime ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423038.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423039.png" /> be relatively prime to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423041.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423042.png" /> is a primitive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423043.png" />-th root of unity, one has | + | As in the case of quadratic residues one defines a power-residue symbol. Let $K$ be a number field containing the $n$-th roots of unity. Let $A$ be the ring of integers of $K$ and let $\mathfrak{p}$ be a prime ideal of $A$. Let $\mathfrak{p}$ be relatively prime to $n$ and $a \in A$. If $\zeta_n$ is a primitive $n$-th root of unity, one has |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423044.png" /></td> </tr></table>
| + | a^{(\mathbf{N}(\mathfrak{p})-1)/n} \equiv \zeta_n^r \pmod {\mathfrak{p}} |
− | | + | $$ |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423045.png" /> is the norm of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423046.png" />, i.e. the number of elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423047.png" />. One now defines the power-residue symbol | + | where $\mathbf{N}(\mathfrak{p})$ is the norm of $\mathfrak{p}$, i.e. the number of elements of $A/\mathfrak{p}$. One now defines the power-residue symbol |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423048.png" /></td> </tr></table>
| + | \left({ \frac{a}{\mathfrak{p}} }\right)_n = \zeta_n^r \ . |
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423049.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423050.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423051.png" />-th power residue modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423052.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423053.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423054.png" />) is solvable for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423055.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423056.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423057.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423058.png" />, one finds back the quadratic-residue symbol, cf. [[Legendre symbol|Legendre symbol]]. | + | If $\left({ \frac{\alpha}{\mathfrak{p}} }\right)_n = 1$, then $\alpha$ is an $n$-th power residue modulo $\mathfrak{p}$, i.e. $x^n \equiv a \pmod {\mathfrak{p}}$ is solvable for $x \in A$. If $K = \mathbb{Q}$, $n=2$ and $\mathfrak{p} = (p)$, one finds back the quadratic-residue symbol, cf. [[Legendre symbol]]. |
| | | |
− | There also exist power-residue reciprocity laws, cf. e.g. [[#References|[a2]]], which specialize to the quadratic reciprocity law if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423059.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074230/p07423060.png" />. | + | There also exist power-residue reciprocity laws, cf. e.g. [[#References|[a2]]], which specialise to the [[quadratic reciprocity law]] if $K = \mathbb{Q}$, $n=2$. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Narkiewicz, "Elementary and analytic theory of algebraic numbers" , Springer & PWN (1990) pp. 394ff</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Neukirch, "Class field theory" , Springer (1986) pp. Chapt. IV, §9</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Narkiewicz, "Elementary and analytic theory of algebraic numbers" , Springer & PWN (1990) pp. 394ff</TD></TR> |
| + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Neukirch, "Class field theory" , Springer (1986) pp. Chapt. IV, §9</TD></TR> |
| + | </table> |
2020 Mathematics Subject Classification: Primary: 11A15 [MSN][ZBL]
modulo $m$
An integer $a$ for which the congruence
$$
x^n \equiv a \pmod m
$$
is solvable for a given integer $n > 1$. The number $a$ is called a residue of degree $n$ modulo $m$. If this congruence is not solvable, then $a$ is called a non-residue of degree $n$ modulo $m$. When $n=2$, the power residues and non-residues are said to be quadratic, when $n=3$, cubic, and when $n=4$, biquadratic or quartic.
In the case of a prime modulus $p$, the question of the solvability of the congruence $x^n \equiv a \pmod p$ can be answered by using the Euler criterion: If $q = \mathrm{hcf}(n,p-1)$, then for the congruence $x^n \equiv a \pmod p$ to be solvable it is necessary and sufficient that
$$
a^q \equiv 1 \pmod p\ .
$$
When this condition is fulfilled, the original congruence has $q$ different solutions modulo $p$. It follows from this test that among the numbers $1,\ldots,p-1$ there are exactly $(p-1)/q$ residues and $(q-1)(p-1)/q$ non-residues of degree $n$ modulo $p$. See Distribution of power residues and non-residues.
As in the case of quadratic residues one defines a power-residue symbol. Let $K$ be a number field containing the $n$-th roots of unity. Let $A$ be the ring of integers of $K$ and let $\mathfrak{p}$ be a prime ideal of $A$. Let $\mathfrak{p}$ be relatively prime to $n$ and $a \in A$. If $\zeta_n$ is a primitive $n$-th root of unity, one has
$$
a^{(\mathbf{N}(\mathfrak{p})-1)/n} \equiv \zeta_n^r \pmod {\mathfrak{p}}
$$
where $\mathbf{N}(\mathfrak{p})$ is the norm of $\mathfrak{p}$, i.e. the number of elements of $A/\mathfrak{p}$. One now defines the power-residue symbol
$$
\left({ \frac{a}{\mathfrak{p}} }\right)_n = \zeta_n^r \ .
$$
If $\left({ \frac{\alpha}{\mathfrak{p}} }\right)_n = 1$, then $\alpha$ is an $n$-th power residue modulo $\mathfrak{p}$, i.e. $x^n \equiv a \pmod {\mathfrak{p}}$ is solvable for $x \in A$. If $K = \mathbb{Q}$, $n=2$ and $\mathfrak{p} = (p)$, one finds back the quadratic-residue symbol, cf. Legendre symbol.
There also exist power-residue reciprocity laws, cf. e.g. [a2], which specialise to the quadratic reciprocity law if $K = \mathbb{Q}$, $n=2$.
References
[a1] | W. Narkiewicz, "Elementary and analytic theory of algebraic numbers" , Springer & PWN (1990) pp. 394ff |
[a2] | J. Neukirch, "Class field theory" , Springer (1986) pp. Chapt. IV, §9 |