Difference between revisions of "Euler criterion"
(Importing text file) |
m (link) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | If an integer | + | {{TEX|done}} |
+ | If an integer $a$ is not divisible by a prime number $p>2$, then the congruence | ||
+ | $$ | ||
+ | a^{(p-1)/2} \equiv \left({\frac{a}{p}}\right) \pmod p | ||
+ | $$ | ||
+ | holds, where $\left({\frac{a}{p}}\right)$ is the [[Legendre symbol]]. Thus, the Euler criterion gives a necessary and sufficient condition for a number $a \not\equiv 0 \pmod p$ to be a [[quadratic residue]] or non-residue modulo $p$. It was proved by L. Euler in 1761 (see [[#References|[1]]]). | ||
− | + | Euler also obtained a more general result: A number $a \not\equiv 0 \pmod p$ is a [[power residue]] of degree $n$ modulo a prime number $p$ if and only if | |
− | + | $$ | |
− | + | a^{(p-1)/\delta} \equiv 1 \pmod p | |
− | + | $$ | |
− | Euler also obtained a more general result: A number | + | where $\delta = \mathrm{hcf}(p-1,n)$. |
− | |||
− | |||
− | |||
− | where | ||
Both these assertions carry over easily to the case of a finite field. | Both these assertions carry over easily to the case of a finite field. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Euler, "Adnotationum ad calculum integralem Euleri" G. Kowalewski (ed.) , ''Opera Omnia Ser. 1; opera mat.'' , '''12''' , Teubner (1914) pp. 493–538</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> L. Euler, "Adnotationum ad calculum integralem Euleri" G. Kowalewski (ed.) , ''Opera Omnia Ser. 1; opera mat.'' , '''12''' , Teubner (1914) pp. 493–538</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)</TD></TR> | ||
+ | </table> | ||
Line 22: | Line 26: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979) pp. Chapts. 5; 7; 8</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979) pp. Chapts. 5; 7; 8</TD></TR> | ||
+ | </table> |
Latest revision as of 07:30, 19 December 2014
If an integer $a$ is not divisible by a prime number $p>2$, then the congruence $$ a^{(p-1)/2} \equiv \left({\frac{a}{p}}\right) \pmod p $$ holds, where $\left({\frac{a}{p}}\right)$ is the Legendre symbol. Thus, the Euler criterion gives a necessary and sufficient condition for a number $a \not\equiv 0 \pmod p$ to be a quadratic residue or non-residue modulo $p$. It was proved by L. Euler in 1761 (see [1]).
Euler also obtained a more general result: A number $a \not\equiv 0 \pmod p$ is a power residue of degree $n$ modulo a prime number $p$ if and only if $$ a^{(p-1)/\delta} \equiv 1 \pmod p $$ where $\delta = \mathrm{hcf}(p-1,n)$.
Both these assertions carry over easily to the case of a finite field.
References
[1] | L. Euler, "Adnotationum ad calculum integralem Euleri" G. Kowalewski (ed.) , Opera Omnia Ser. 1; opera mat. , 12 , Teubner (1914) pp. 493–538 |
[2] | I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian) |
Comments
References
[a1] | G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979) pp. Chapts. 5; 7; 8 |
Euler criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Euler_criterion&oldid=15846