Difference between revisions of "Jacobi symbol"
(MSC 11A15) |
(Comment: Extension to Legendre–Jacobi–Kronecker symbol, cite Cohen (1993)) |
||
Line 32: | Line 32: | ||
====Comments==== | ====Comments==== | ||
Considered as a function on $(\mathbf Z/p\mathbf Z)^*$, the Jacobi symbol is an example of a real character. This real character plays an important role in the decomposition of rational primes in a [[Quadratic field|quadratic field]] (see [[#References|[a1]]]). | Considered as a function on $(\mathbf Z/p\mathbf Z)^*$, the Jacobi symbol is an example of a real character. This real character plays an important role in the decomposition of rational primes in a [[Quadratic field|quadratic field]] (see [[#References|[a1]]]). | ||
+ | |||
+ | There is a further extension to the case of arbitrary $P$, the Kronecker, or [[Legendre–Jacobi–Kronecker symbol]] | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D.B. Zagier, "Zetafunktionen und quadratische Körper" , Springer (1981)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> D.B. Zagier, "Zetafunktionen und quadratische Körper" , Springer (1981)</TD></TR> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> Henri Cohen, ''A Course in Computational Algebraic Number Theory'', Graduate Texts in Mathematics '''138''' Springer (1993) ISBN 3-540-55640-0</TD></TR> | ||
+ | </table> |
Revision as of 19:50, 14 December 2014
2020 Mathematics Subject Classification: Primary: 11A15 [MSN][ZBL]
$$\left(\frac aP\right)$$
A function defined for all integers $a$ coprime to a given odd integer $P>1$ as follows: Let $P=p_1\ldots p_r$ be an expansion of $P$ into prime factors (not necessarily different), then
$$\left(\frac aP\right)=\left(\frac{a}{p_1}\right)\ldots\left(\frac{a}{p_r}\right),$$
where
$$\left(\frac{a}{p_i}\right)$$
is the Legendre symbol.
The Jacobi symbol is a generalization of the Legendre symbol and has similar properties. In particular, the reciprocity law:
$$\left(\frac PQ\right)\left(\frac QP\right)=(-1)^{(P-1)/2\cdot(Q-1)/2}$$
holds, where $P$ and $Q$ are positive odd coprime numbers, and the supplementary formulas
$$\left(\frac{-1}{P}\right)=(-1)^{(P-1)/2},\quad\left(\frac 2P\right)=(-1)^{(P^2-1)/8}$$
are true.
The Jacobi symbol was introduced by C.G.J. Jacobi (1837).
References
[1] | C.G.J. Jacobi, "Gesammelte Werke" , 1–7 , Reimer (1881–1891) |
[2] | P.G.L. Dirichlet, "Vorlesungen über Zahlentheorie" , Vieweg (1894) |
[3] | P. Bachmann, "Niedere Zahlentheorie" , 1–2 , Teubner (1902–1910) |
Comments
Considered as a function on $(\mathbf Z/p\mathbf Z)^*$, the Jacobi symbol is an example of a real character. This real character plays an important role in the decomposition of rational primes in a quadratic field (see [a1]).
There is a further extension to the case of arbitrary $P$, the Kronecker, or Legendre–Jacobi–Kronecker symbol
References
[a1] | D.B. Zagier, "Zetafunktionen und quadratische Körper" , Springer (1981) |
[a1] | Henri Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics 138 Springer (1993) ISBN 3-540-55640-0 |
Jacobi symbol. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jacobi_symbol&oldid=35651