|
|
(8 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | ''of a skew-symmetric matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p0725001.png" />''
| + | {{MSC|15}} |
| + | {{TEX|done}} |
| | | |
− | The polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p0725002.png" /> in the entries of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p0725003.png" /> whose square is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p0725004.png" />. More precisely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p0725005.png" /> is a skew-symmetric matrix (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p0725006.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p0725007.png" />; such a matrix is sometimes also called an alternating matrix) of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p0725008.png" /> over a commutative-associative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p0725009.png" /> with a unit, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250010.png" /> is the element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250011.png" /> given by the formula | + | The Pfaffian (of a [[skew-symmetric matrix]] $X$) is the polynomial $\def\Pf{\mathrm{Pf}\;} \Pf X$ in the entries of $X$ whose square is the [[determinant]] $\det X$. More precisely, if $X = \|x_{ij}\|$ is a skew-symmetric matrix (i.e. $x_{ij}=-x_{ji}$, $x_{ii}=0$; such a matrix is sometimes also called an alternating matrix) of order $2n$ over a commutative-associative ring $A$ with a unit, then $\Pf X$ is the element of $A$ given by the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250012.png" /></td> </tr></table>
| + | $$ |
| + | \Pf X = \sum_s \epsilon(s)x_{i_1j_1}\ldots x_{i_nj_n}, |
| + | $$ |
| | | |
− | where the summation is over all possible partitions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250013.png" /> of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250014.png" /> into non-intersecting pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250015.png" />, where one may suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250017.png" />, and where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250018.png" /> is the sign of the permutation | + | where the summation is over all possible partitions $s$ of the set $\{1,\ldots,2n\}$ into non-intersecting pairs $\{i_\alpha,j_\alpha\}$, where one may suppose that $i_\alpha<j_\alpha$, $\alpha=1,\ldots,n$, and where $\epsilon(s)$ is the sign of the permutation |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250019.png" /></td> </tr></table>
| + | $$ |
| + | \left( |
| + | \begin{matrix} |
| + | 1 & 2 & \ldots & 2n-1 & 2n \\ |
| + | i_1 & j_1 & \ldots & i_n & j_n |
| + | \end{matrix} |
| + | \right). |
| + | $$ |
| | | |
| A Pfaffian has the following properties: | | A Pfaffian has the following properties: |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250020.png" /> for any matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250021.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250022.png" />;
| + | # $\Pf (C^T X C) = (\det C) (\Pf X)$ for any matrix $C$ of order $2n$; |
− | | + | # $(\Pf X)^2= \det X$; |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250023.png" />; | + | # if $E$ is a [[Free module|free $A$-module]] with basis $e_1,\ldots,e_{2n}$ and if $$ |
− | | + | u = \sum_{i < j} x_{ij} e_i \wedge e_j \in \bigwedge^2 A, |
− | 3) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250024.png" /> is a free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250025.png" />-module with basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250026.png" /> and if
| + | $$ then $$ |
− | | + | \bigwedge^n u =n! (\Pf X) e_1 \wedge \ldots \wedge e_{2n}. |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250027.png" /></td> </tr></table>
| + | $$ |
− | | |
− | then | |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250028.png" /></td> </tr></table>
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , '''2''' , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French)</TD></TR></table>
| + | {| |
| + | |- |
| + | |align="top"|{{Ref|Bo}}||valign="top"| N. Bourbaki, "Elements of mathematics", '''2. Linear and multilinear algebra''', Addison-Wesley (1973) pp. Chapt. 2 (Translated from French) {{MR|0274237}} |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 15-XX [MSN][ZBL]
The Pfaffian (of a skew-symmetric matrix $X$) is the polynomial $\def\Pf{\mathrm{Pf}\;} \Pf X$ in the entries of $X$ whose square is the determinant $\det X$. More precisely, if $X = \|x_{ij}\|$ is a skew-symmetric matrix (i.e. $x_{ij}=-x_{ji}$, $x_{ii}=0$; such a matrix is sometimes also called an alternating matrix) of order $2n$ over a commutative-associative ring $A$ with a unit, then $\Pf X$ is the element of $A$ given by the formula
$$
\Pf X = \sum_s \epsilon(s)x_{i_1j_1}\ldots x_{i_nj_n},
$$
where the summation is over all possible partitions $s$ of the set $\{1,\ldots,2n\}$ into non-intersecting pairs $\{i_\alpha,j_\alpha\}$, where one may suppose that $i_\alpha<j_\alpha$, $\alpha=1,\ldots,n$, and where $\epsilon(s)$ is the sign of the permutation
$$
\left(
\begin{matrix}
1 & 2 & \ldots & 2n-1 & 2n \\
i_1 & j_1 & \ldots & i_n & j_n
\end{matrix}
\right).
$$
A Pfaffian has the following properties:
- $\Pf (C^T X C) = (\det C) (\Pf X)$ for any matrix $C$ of order $2n$;
- $(\Pf X)^2= \det X$;
- if $E$ is a free $A$-module with basis $e_1,\ldots,e_{2n}$ and if $$
u = \sum_{i < j} x_{ij} e_i \wedge e_j \in \bigwedge^2 A,
$$ then $$
\bigwedge^n u =n! (\Pf X) e_1 \wedge \ldots \wedge e_{2n}.
$$
References
[Bo] |
N. Bourbaki, "Elements of mathematics", 2. Linear and multilinear algebra, Addison-Wesley (1973) pp. Chapt. 2 (Translated from French) MR0274237
|