Difference between revisions of "Complex conjugate"
From Encyclopedia of Mathematics
(Start article: Complex conjugate) |
(of order two) |
||
Line 3: | Line 3: | ||
Two [[complex number]]s of the form $z = x + iy$ and $\bar z = x - iy$: in polar form, $r e^{i\theta}$ and $r e^{-i\theta}$. In terms of the [[Argand diagram]], they are symmetric in the $x$-axis. A complex number is its own complex conjugate if and only if it is a [[real number]]. | Two [[complex number]]s of the form $z = x + iy$ and $\bar z = x - iy$: in polar form, $r e^{i\theta}$ and $r e^{-i\theta}$. In terms of the [[Argand diagram]], they are symmetric in the $x$-axis. A complex number is its own complex conjugate if and only if it is a [[real number]]. | ||
− | '''Complex conjugation''' is the map $z \mapsto \bar z$. We have $\overline{z+w} = \bar z + \bar w$, $\overline{z\cdot w} = \bar z \cdot \bar w$, $\overline{z^{-1}} = \bar z^{-1}$, $\overline{\bar z} = z$. Complex conjugation is an automorphism of the field of complex numbers. The [[absolute value]] $|z|$ is the positive square root of $z \bar z$. | + | '''Complex conjugation''' is the map $z \mapsto \bar z$. We have $\overline{z+w} = \bar z + \bar w$, $\overline{z\cdot w} = \bar z \cdot \bar w$, $\overline{z^{-1}} = \bar z^{-1}$, $\overline{\bar z} = z$. Complex conjugation is an automorphism of the field of complex numbers of order two. The [[absolute value]] $|z|$ is the positive square root of $z \bar z$. |
Latest revision as of 16:54, 30 November 2014
Two complex numbers of the form $z = x + iy$ and $\bar z = x - iy$: in polar form, $r e^{i\theta}$ and $r e^{-i\theta}$. In terms of the Argand diagram, they are symmetric in the $x$-axis. A complex number is its own complex conjugate if and only if it is a real number.
Complex conjugation is the map $z \mapsto \bar z$. We have $\overline{z+w} = \bar z + \bar w$, $\overline{z\cdot w} = \bar z \cdot \bar w$, $\overline{z^{-1}} = \bar z^{-1}$, $\overline{\bar z} = z$. Complex conjugation is an automorphism of the field of complex numbers of order two. The absolute value $|z|$ is the positive square root of $z \bar z$.
How to Cite This Entry:
Complex conjugate. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Complex_conjugate&oldid=35190
Complex conjugate. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Complex_conjugate&oldid=35190