Namespaces
Variants
Actions

Difference between revisions of "Secant"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
(Category:Special functions)
Line 28: Line 28:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Knopp,  "Theorie und Anwendung der unendlichen Reihen" , Springer  (1964)  (English translation: Blackie, 1951 &amp; Dover, reprint, 1990)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Abramowitz,  I.A. Stegun,  "Handbook of mathematical functions" , Dover, reprint  (1965)  pp. §4.3</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Knopp,  "Theorie und Anwendung der unendlichen Reihen" , Springer  (1964)  (English translation: Blackie, 1951 &amp; Dover, reprint, 1990)</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Abramowitz,  I.A. Stegun,  "Handbook of mathematical functions" , Dover, reprint  (1965)  pp. §4.3</TD></TR>
 +
</table>
 +
 
 +
[[Category:Special functions]]

Revision as of 21:13, 14 November 2014

One of the trigonometric functions:

another notation is \operatorname{sc}x. Its domain of definition is the whole real line apart from the points

x=\frac\pi2(2n+1),\quad n=0,\pm1,\pm2,\mathinner{\ldotp\ldotp\ldotp\ldotp}\tag{*}

The secant is an unbounded even 2\pi-periodic function. The derivative of the secant is

(\sec x)'=\frac{\sin x}{\cos^2x}=(\tan x)(\sec x).

The indefinite integral of the secant is

\int\sec xdx=\ln\left|\tan\left(\frac\pi4+\frac x2\right)\right|+C.

The secant can be expanded in a series:

\sec x=

=\frac{\pi}{(\pi/2)^2-x^2}-\frac{3\pi}{(3\pi/2)^2-x^2}+\frac{5\pi}{(5\pi/2)^2-x^2}-\mathinner{\ldotp\ldotp\ldotp\ldotp}


Comments

The series expansion is valid in the domain of definition of \sec, i.e. not for the points \ref{*}.

References

[a1] K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990)
[a2] M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1965) pp. §4.3
How to Cite This Entry:
Secant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Secant&oldid=34482
This article was adapted from an original article by Yu.A. Gor'kov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article