Difference between revisions of "Secant"
(TeX) |
(Category:Special functions) |
||
Line 28: | Line 28: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1965) pp. §4.3</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990)</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1965) pp. §4.3</TD></TR> | ||
+ | </table> | ||
+ | |||
+ | [[Category:Special functions]] |
Revision as of 21:13, 14 November 2014
One of the trigonometric functions:
another notation is \operatorname{sc}x. Its domain of definition is the whole real line apart from the points
x=\frac\pi2(2n+1),\quad n=0,\pm1,\pm2,\mathinner{\ldotp\ldotp\ldotp\ldotp}\tag{*}
The secant is an unbounded even 2\pi-periodic function. The derivative of the secant is
(\sec x)'=\frac{\sin x}{\cos^2x}=(\tan x)(\sec x).
The indefinite integral of the secant is
\int\sec xdx=\ln\left|\tan\left(\frac\pi4+\frac x2\right)\right|+C.
The secant can be expanded in a series:
\sec x=
=\frac{\pi}{(\pi/2)^2-x^2}-\frac{3\pi}{(3\pi/2)^2-x^2}+\frac{5\pi}{(5\pi/2)^2-x^2}-\mathinner{\ldotp\ldotp\ldotp\ldotp}
Comments
The series expansion is valid in the domain of definition of \sec, i.e. not for the points \ref{*}.
References
[a1] | K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990) |
[a2] | M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1965) pp. §4.3 |
Secant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Secant&oldid=34482