Difference between revisions of "Quasi-uniform convergence"
(Importing text file) |
(Category:Functional analysis) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | A generalization of [[ | + | {{TEX|done}} |
+ | A generalization of [[uniform convergence]]. A sequence of mappings $\{f_n\}$ from a topological space $X$ into a metric space $Y$ converging pointwise to a mapping $f$ is called quasi-uniformly convergent if for any $\epsilon>0$ and any positive integer $N$ there exist a countable open covering $\{\Gamma_0,\Gamma_1,\ldots\}$ of $X$ and a sequence $n_0,n_1,\ldots$ of positive integers greater than $N$ such that $\rho(f(x),f_{n_k}(x))<\epsilon$ for every $x\in\Gamma_k$. Uniform convergence implies quasi-uniform convergence. For sequences of continuous functions, quasi-uniform convergence is a necessary and sufficient condition for the limit function to be continuous (the Arzelà–Aleksandrov theorem). | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.S. Aleksandrov, "Einführung in die Mengenlehre und die Theorie der reellen Funktionen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> P.S. Aleksandrov, "Einführung in die Mengenlehre und die Theorie der reellen Funktionen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian)</TD></TR> | ||
+ | </table> | ||
+ | |||
+ | [[Category:Functional analysis]] |
Latest revision as of 19:31, 9 November 2014
A generalization of uniform convergence. A sequence of mappings $\{f_n\}$ from a topological space $X$ into a metric space $Y$ converging pointwise to a mapping $f$ is called quasi-uniformly convergent if for any $\epsilon>0$ and any positive integer $N$ there exist a countable open covering $\{\Gamma_0,\Gamma_1,\ldots\}$ of $X$ and a sequence $n_0,n_1,\ldots$ of positive integers greater than $N$ such that $\rho(f(x),f_{n_k}(x))<\epsilon$ for every $x\in\Gamma_k$. Uniform convergence implies quasi-uniform convergence. For sequences of continuous functions, quasi-uniform convergence is a necessary and sufficient condition for the limit function to be continuous (the Arzelà–Aleksandrov theorem).
References
[1] | P.S. Aleksandrov, "Einführung in die Mengenlehre und die Theorie der reellen Funktionen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian) |
Quasi-uniform convergence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-uniform_convergence&oldid=14862