Namespaces
Variants
Actions

Difference between revisions of "Quasi-uniform convergence"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(Category:Functional analysis)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
A generalization of [[Uniform convergence|uniform convergence]]. A sequence of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076730/q0767301.png" /> from a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076730/q0767302.png" /> into a metric space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076730/q0767303.png" /> converging pointwise to a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076730/q0767304.png" /> is called quasi-uniformly convergent if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076730/q0767305.png" /> and any positive integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076730/q0767306.png" /> there exist a countable open covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076730/q0767307.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076730/q0767308.png" /> and a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076730/q0767309.png" /> of positive integers greater than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076730/q07673010.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076730/q07673011.png" /> for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076730/q07673012.png" />. Uniform convergence implies quasi-uniform convergence. For sequences of continuous functions, quasi-uniform convergence is a necessary and sufficient condition for the limit function to be continuous (the Arzelà–Aleksandrov theorem).
+
{{TEX|done}}
 +
A generalization of [[uniform convergence]]. A sequence of mappings $\{f_n\}$ from a topological space $X$ into a metric space $Y$ converging pointwise to a mapping $f$ is called quasi-uniformly convergent if for any $\epsilon>0$ and any positive integer $N$ there exist a countable open covering $\{\Gamma_0,\Gamma_1,\ldots\}$ of $X$ and a sequence $n_0,n_1,\ldots$ of positive integers greater than $N$ such that $\rho(f(x),f_{n_k}(x))<\epsilon$ for every $x\in\Gamma_k$. Uniform convergence implies quasi-uniform convergence. For sequences of continuous functions, quasi-uniform convergence is a necessary and sufficient condition for the limit function to be continuous (the Arzelà–Aleksandrov theorem).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.S. Aleksandrov,  "Einführung in die Mengenlehre und die Theorie der reellen Funktionen" , Deutsch. Verlag Wissenschaft.  (1956)  (Translated from Russian)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  P.S. Aleksandrov,  "Einführung in die Mengenlehre und die Theorie der reellen Funktionen" , Deutsch. Verlag Wissenschaft.  (1956)  (Translated from Russian)</TD></TR>
 +
</table>
 +
 
 +
[[Category:Functional analysis]]

Latest revision as of 19:31, 9 November 2014

A generalization of uniform convergence. A sequence of mappings $\{f_n\}$ from a topological space $X$ into a metric space $Y$ converging pointwise to a mapping $f$ is called quasi-uniformly convergent if for any $\epsilon>0$ and any positive integer $N$ there exist a countable open covering $\{\Gamma_0,\Gamma_1,\ldots\}$ of $X$ and a sequence $n_0,n_1,\ldots$ of positive integers greater than $N$ such that $\rho(f(x),f_{n_k}(x))<\epsilon$ for every $x\in\Gamma_k$. Uniform convergence implies quasi-uniform convergence. For sequences of continuous functions, quasi-uniform convergence is a necessary and sufficient condition for the limit function to be continuous (the Arzelà–Aleksandrov theorem).

References

[1] P.S. Aleksandrov, "Einführung in die Mengenlehre und die Theorie der reellen Funktionen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian)
How to Cite This Entry:
Quasi-uniform convergence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-uniform_convergence&oldid=14862
This article was adapted from an original article by V.V. Fedorchuk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article