Difference between revisions of "Whitehead homomorphism"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
m (ce) |
||
Line 3: | Line 3: | ||
A homomorphism from the [[Stable homotopy group|stable homotopy group]] of the spectrum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w0977803.png" /> to the stable homotopy group of the spectrum of the sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w0977804.png" />, defined in a special way. One construction of the Whitehead group is by the Hopf construction: A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w0977805.png" /> determines a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w0977806.png" />, which can be extended to a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w0977807.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w0977808.png" /> to the upper hemi-sphere of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w0977809.png" />. There is also an extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778010.png" /> to the lower hemi-sphere of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778011.png" />, and this determines a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778012.png" />. This construction gives a mapping of homotopy classes, and so defines a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778013.png" />, called the Whitehead group. | A homomorphism from the [[Stable homotopy group|stable homotopy group]] of the spectrum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w0977803.png" /> to the stable homotopy group of the spectrum of the sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w0977804.png" />, defined in a special way. One construction of the Whitehead group is by the Hopf construction: A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w0977805.png" /> determines a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w0977806.png" />, which can be extended to a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w0977807.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w0977808.png" /> to the upper hemi-sphere of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w0977809.png" />. There is also an extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778010.png" /> to the lower hemi-sphere of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778011.png" />, and this determines a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778012.png" />. This construction gives a mapping of homotopy classes, and so defines a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778013.png" />, called the Whitehead group. | ||
− | This homomorphism was first constructed by G.W. Whitehead , who also proved a theorem on the non-triviality of the infinite series of homotopy groups of spheres, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778014.png" />, for the following values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778016.png" />: | + | This homomorphism was first constructed by G.W. Whitehead , who also proved a theorem on the non-triviality of the infinite series of homotopy groups of spheres, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778014.png" />, for the following values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778016.png" />: |
+ | |||
+ | <table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778017.png" /></td> <td colname="2" style="background-color:white;" colspan="1">14</td> <td colname="3" style="background-color:white;" colspan="1">14</td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778018.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778019.png" /></td> <td colname="6" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778020.png" /></td> <td colname="7" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778021.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778022.png" /></td> <td colname="2" style="background-color:white;" colspan="1">7</td> <td colname="3" style="background-color:white;" colspan="1">4</td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778023.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778024.png" /></td> <td colname="6" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778025.png" /></td> <td colname="7" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778026.png" /></td> </tr> </tbody> </table> | ||
</td></tr> </table> | </td></tr> </table> | ||
− | The stable homotopy groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778027.png" /> are described by the Bott periodicity theorem [[#References|[2]]]: | + | The stable homotopy groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778027.png" /> are described by the Bott periodicity theorem [[#References|[2]]]: |
+ | |||
+ | <table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778028.png" /></td> <td colname="2" style="background-color:white;" colspan="1">0</td> <td colname="3" style="background-color:white;" colspan="1">1</td> <td colname="4" style="background-color:white;" colspan="1">2</td> <td colname="5" style="background-color:white;" colspan="1">3</td> <td colname="6" style="background-color:white;" colspan="1">4</td> <td colname="7" style="background-color:white;" colspan="1">5</td> <td colname="8" style="background-color:white;" colspan="1">6</td> <td colname="9" style="background-color:white;" colspan="1">7</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778029.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778030.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778031.png" /></td> <td colname="4" style="background-color:white;" colspan="1">0</td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778032.png" /></td> <td colname="6" style="background-color:white;" colspan="1">0</td> <td colname="7" style="background-color:white;" colspan="1">0</td> <td colname="8" style="background-color:white;" colspan="1">0</td> <td colname="9" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097780/w09778033.png" /></td> </tr> </tbody> </table> | ||
</td></tr> </table> | </td></tr> </table> |
Revision as of 19:19, 8 November 2014
-homomorphism
A homomorphism from the stable homotopy group of the spectrum of to the stable homotopy group of the spectrum of the sphere , defined in a special way. One construction of the Whitehead group is by the Hopf construction: A mapping determines a mapping , which can be extended to a mapping of to the upper hemi-sphere of . There is also an extension to the lower hemi-sphere of , and this determines a mapping . This construction gives a mapping of homotopy classes, and so defines a homomorphism , called the Whitehead group.
This homomorphism was first constructed by G.W. Whitehead , who also proved a theorem on the non-triviality of the infinite series of homotopy groups of spheres, , for the following values of and :
<tbody> </tbody>
|
The stable homotopy groups are described by the Bott periodicity theorem [2]:
<tbody> </tbody>
|
The image of the Whitehead homomorphism has been completely calculated (cf. [4], [5]): for () and the Whitehead group is a monomorphism and its image is a direct summand in the group ; for () and the Whitehead group is a monomorphism on a direct summand of ; for the image of the Whitehead group is the cyclic group of order , giving a direct summand in , where is the denominator of the irreducible fraction , being the -th Bernoulli number (cf. Bernoulli numbers).
References
[1a] | G.W. Whitehead, "On the homotopy groups of spheres and rotation groups" Ann. of Math. , 43 (1942) pp. 634–640 MR0007107 Zbl 0060.41105 |
[1b] | G.W. Whitehead, "A generalization of the Hopf invariant" Ann. of Math. , 51 (1950) pp. 192–237 MR0041435 Zbl 0045.44202 Zbl 0041.51903 |
[2] | R. Bott, "The stable homotopy of the classical groups" Ann. of Math. , 70 (1959) pp. 313–337 MR0110104 Zbl 0129.15601 |
[3a] | J.F. Adams, "On the groups - I" Topology , 2 (1963) pp. 181–195 |
[3b] | J.F. Adams, "On the groups - II" Topology , 3 (1965) pp. 137–171 |
[3c] | J.F. Adams, "On the groups - III" Topology , 3 (1965) pp. 193–222 |
[3d] | J.F. Adams, "On the groups - IV" Topology , 5 (1966) pp. 21–71 |
[4] | J.C. Becker, D.H. Gottlieb, "The transfer map and fiber bundles" Topology , 14 (1975) pp. 1–12 MR0377873 Zbl 0306.55017 |
[5] | J.F. Adams, "Infinite loop spaces" , Princeton Univ. Press (1978) MR0505692 Zbl 0398.55008 |
Comments
Given a mapping of topological spaces, quite generally the Hopf construction gives a mapping
from the join of and to the suspension of , as follows. Consider
The join is a certain quotient space of and is a quotient space of . An elementary check shows that is compatible with the corresponding equivalence relations, and hence defines a mapping as desired. Recall that , cf. Join.
Now, let be a mapping; each element of induces a mapping of the -sphere into itself. Hence induces a mapping
Applying the Hopf construction to gives the mapping :
References
[a1] | B. Gray, "Homotopy theory. An introduction to algebraic topology" , Acad. Press (1975) pp. 334 MR0402714 Zbl 0322.55001 |
[a2] | R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975) pp. 480ff MR0385836 Zbl 0305.55001 |
Whitehead homomorphism. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Whitehead_homomorphism&oldid=24173