|
|
(2 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
− | A simple associative algebra with a unit element that is a [[Central algebra|central algebra]]. Every finite-dimensional central simple algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c0212101.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c0212102.png" /> is isomorphic to a matrix algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c0212103.png" /> over a finite-dimensional central division algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c0212104.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c0212105.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c0212106.png" /> is algebraically closed, then every finite-dimensional central simple algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c0212107.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c0212108.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c0212109.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c02121010.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c02121011.png" /> is isomorphic to the algebra of real or quaternion matrices. The tensor product of a central simple algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c02121012.png" /> and an arbitrary simple algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c02121013.png" /> is a simple algebra, which is central if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c02121014.png" /> is central. Two finite-dimensional central simple algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c02121015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c02121016.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c02121017.png" /> are called equivalent if
| + | {{MSC|16}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c02121018.png" /></td> </tr></table>
| |
| | | |
− | for certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c02121019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c02121020.png" />, or, which is equivalent, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c02121021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c02121022.png" /> are isomorphic matrix algebras over one and the same central division algebra. The equivalence classes of central simple algebras over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c02121023.png" /> form the [[Brauer group|Brauer group]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021210/c02121024.png" /> relative to the operation induced by tensor multiplication.
| + | A central simple algebra is a simple [[associative algebra]] with a unit element (cf. [[Simple algebra]], that is a |
| + | [[Central algebra|central algebra]]. Every finite-dimensional central |
| + | simple algebra $A$ over a field $K$ is isomorphic to a matrix algebra |
| + | $M_n(C)$ over a finite-dimensional central division algebra $C$ over |
| + | $K$. In particular, if $K$ is algebraically closed, then every |
| + | finite-dimensional central simple algebra $A$ over $K$ is isomorphic |
| + | to $M_n(K)$, and if $K=\R$, then $A$ is isomorphic to the algebra of real or |
| + | quaternion matrices. The tensor product of a central simple algebra |
| + | $A$ and an arbitrary simple algebra $B$ is a simple algebra, which is |
| + | central if $B$ is central. Two finite-dimensional central simple |
| + | algebras $A$ and $B$ over $K$ are called equivalent if |
| + | $$A\otimes_K M_m(K) \cong B\otimes M_n(K)$$ |
| + | for |
| + | certain $m$ and $n$, or, which is equivalent, if $A$ and $B$ are |
| + | isomorphic matrix algebras over one and the same central division |
| + | algebra. The equivalence classes of central simple algebras over $K$ |
| + | form the |
| + | [[Brauer group|Brauer group]] of $K$ relative to the operation induced |
| + | by tensor multiplication. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.L. van der Waerden, "Algebra" , '''1–2''' , Springer (1967–1971) (Translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> Yu.A. Drozd, V.V. Kirichenko, "Finite-dimensional algebras" , Kiev (1980) (In Russian)</TD></TR></table>
| + | {| |
− | | + | |- |
− | | + | |valign="top"|{{Ref|Al}}||valign="top"| A.A. Albert, "Structure of algebras", Amer. Math. Soc. (1939) {{MR|0000595}} {{ZBL|0023.19901}} |
− | | + | |- |
− | ====Comments====
| + | |valign="top"|{{Ref|De}}||valign="top"| M. Deuring, "Algebren", Springer (1935) {{ZBL|0011.19801}} {{MR|0228526}} |
− | | + | |- |
− | | + | |valign="top"|{{Ref|DrKi}}||valign="top"| Yu.A. Drozd, V.V. Kirichenko, "Finite-dimensional algebras", Kiev (1980) (In Russian) {{MR|0591671}} {{ZBL|0469.16001}} |
− | ====References====
| + | |- |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.S. Peirce, "Associative algebras" , Springer (1980)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.A. Albert, "Structure of algebras" , Amer. Math. Soc. (1939)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Deuring, "Algebren" , Springer (1935)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> I.N. Herstein, "Noncommutative rings" , Math. Assoc. Amer. (1968)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> N. Jacobson, "Structure of rings" , Amer. Math. Soc. (1956)</TD></TR></table>
| + | |valign="top"|{{Ref|Pe}}||valign="top"| R.S. Peirce, "Associative algebras", Springer (1980) |
| + | |- |
| + | |valign="top"|{{Ref|He}}||valign="top"| I.N. Herstein, "Noncommutative rings", Math. Assoc. Amer. (1968) {{MR|0227205}} {{ZBL|0177.05801}} |
| + | |- |
| + | |valign="top"|{{Ref|Ja}}||valign="top"| N. Jacobson, "Structure of rings", Amer. Math. Soc. (1956) {{MR|0081264}} {{ZBL|0073.02002}} |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 16-XX [MSN][ZBL]
A central simple algebra is a simple associative algebra with a unit element (cf. Simple algebra, that is a
central algebra. Every finite-dimensional central
simple algebra $A$ over a field $K$ is isomorphic to a matrix algebra
$M_n(C)$ over a finite-dimensional central division algebra $C$ over
$K$. In particular, if $K$ is algebraically closed, then every
finite-dimensional central simple algebra $A$ over $K$ is isomorphic
to $M_n(K)$, and if $K=\R$, then $A$ is isomorphic to the algebra of real or
quaternion matrices. The tensor product of a central simple algebra
$A$ and an arbitrary simple algebra $B$ is a simple algebra, which is
central if $B$ is central. Two finite-dimensional central simple
algebras $A$ and $B$ over $K$ are called equivalent if
$$A\otimes_K M_m(K) \cong B\otimes M_n(K)$$
for
certain $m$ and $n$, or, which is equivalent, if $A$ and $B$ are
isomorphic matrix algebras over one and the same central division
algebra. The equivalence classes of central simple algebras over $K$
form the
Brauer group of $K$ relative to the operation induced
by tensor multiplication.
References
[Al] |
A.A. Albert, "Structure of algebras", Amer. Math. Soc. (1939) MR0000595 Zbl 0023.19901
|
[De] |
M. Deuring, "Algebren", Springer (1935) Zbl 0011.19801 MR0228526
|
[DrKi] |
Yu.A. Drozd, V.V. Kirichenko, "Finite-dimensional algebras", Kiev (1980) (In Russian) MR0591671 Zbl 0469.16001
|
[Pe] |
R.S. Peirce, "Associative algebras", Springer (1980)
|
[He] |
I.N. Herstein, "Noncommutative rings", Math. Assoc. Amer. (1968) MR0227205 Zbl 0177.05801
|
[Ja] |
N. Jacobson, "Structure of rings", Amer. Math. Soc. (1956) MR0081264 Zbl 0073.02002
|