Difference between revisions of "Möbius function"
(Möbius inversion) |
m (ce) |
||
Line 3: | Line 3: | ||
The Möbius function is an | The Möbius function is an | ||
− | [[Arithmetic function|arithmetic function]] of a natural argument$n$ with $\mu(1)=1$, $\mu(n)=0$ if $n$ is divisible by the square of a prime number, otherwise $\mu(n) = (-1)^k$, where $k$ is the number of prime factors of $n$. This function was introduced by A. Möbius in 1832. | + | [[Arithmetic function|arithmetic function]] of a natural number argument $n$ with $\mu(1)=1$, $\mu(n)=0$ if $n$ is divisible by the square of a prime number, otherwise $\mu(n) = (-1)^k$, where $k$ is the number of prime factors of $n$. This function was introduced by A. Möbius in 1832. |
The Möbius function is a | The Möbius function is a | ||
Line 17: | Line 17: | ||
====Comments==== | ====Comments==== | ||
The multiplicative arithmetic functions form a | The multiplicative arithmetic functions form a | ||
− | [[Group|group]] under the convolution product $(f*g)(n) = \sum_{d|n}f(d)g(n/d)$. The Möbius function is in fact the inverse of the constant multiplicative function $E$ (defined by $E(n)=1$ for all $n\in \N$) under this convolution product. From this there follows many "inversion formulas" , cf. | + | [[Group|group]] under the convolution product $(f*g)(n) = \sum_{d|n}f(d)g(n/d)$. The Möbius function is in fact the inverse of the constant multiplicative function $E$ (defined by $E(n)=1$ for all $n\in \N$) under this convolution product. From this there follows many "inversion formulas" , cf. [[Möbius inversion]]. |
− | [[Möbius inversion]]. | ||
====References==== | ====References==== |
Revision as of 19:44, 1 November 2014
2020 Mathematics Subject Classification: Primary: 11A [MSN][ZBL]
The Möbius function is an arithmetic function of a natural number argument $n$ with $\mu(1)=1$, $\mu(n)=0$ if $n$ is divisible by the square of a prime number, otherwise $\mu(n) = (-1)^k$, where $k$ is the number of prime factors of $n$. This function was introduced by A. Möbius in 1832.
The Möbius function is a multiplicative arithmetic function; $\sum_{d|n}\mu(d) = 0$ if $n>1$. It is used in the study of other arithmetic functions; it appears in inversion formulas (see, e.g. Möbius series). The following estimate is known for the mean value of the Möbius function [Wa]:
$${1\over x}\Big|\sum_{n\le x}\mu(n)\Big| \le \exp\{-c \ln^{3/5} x(\ln\ln x)^{-1/5} \},$$
where $c$ is a constant. The fact that the mean value tends to zero as $x\to \infty$ implies an asymptotic law for the distribution of prime numbers in the natural series.
Comments
The multiplicative arithmetic functions form a group under the convolution product $(f*g)(n) = \sum_{d|n}f(d)g(n/d)$. The Möbius function is in fact the inverse of the constant multiplicative function $E$ (defined by $E(n)=1$ for all $n\in \N$) under this convolution product. From this there follows many "inversion formulas" , cf. Möbius inversion.
References
[HaWr] | G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers", Clarendon Press (1979) MR0568909 |
[Vi] | I.M. Vinogradov, "Elements of number theory", Dover, reprint (1954) (Translated from Russian) MR0062138 |
[Wa] | A. Walfisz, "Weylsche Exponentialsummen in der neueren Zahlentheorie", Deutsch. Verlag Wissenschaft. (1963) MR0220685 |
Möbius function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=M%C3%B6bius_function&oldid=34167