Difference between revisions of "Liouville number"
From Encyclopedia of Mathematics
(TeX) |
(Category:Number theory) |
||
Line 23: | Line 23: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> O. Perron, "Die Lehre von den Kettenbrüchen" , '''1''' , Teubner (1977) pp. Sect. 35</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> O. Perron, "Irrationalzahlen" , Chelsea, reprint (1948)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> O. Perron, "Die Lehre von den Kettenbrüchen" , '''1''' , Teubner (1977) pp. Sect. 35</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> O. Perron, "Irrationalzahlen" , Chelsea, reprint (1948)</TD></TR> | ||
+ | </table> | ||
+ | |||
+ | [[Category:Number theory]] |
Revision as of 18:56, 18 October 2014
A real number $\alpha$ such that for any $\nu\geq1$ the inequality
$$\left|\alpha-\frac pq\right|<q^{-\nu}$$
has infinitely many integer solutions $p$ and $q$ satisfying the conditions $q>0$, $(p,q)=1$. The fact that a Liouville number is transcendental (cf. Transcendental number) follows from the Liouville theorem (cf. Liouville theorems). These numbers were studied by J. Liouville [1].
Examples of Liouville numbers are:
$$\alpha_1=\sum_{n=1}^\infty2^{-n!},$$
$$\alpha_2=\sum_{n=1}^\infty(-1)^n2^{-3^n},$$
$$\alpha_3=\sum_{n=1}^\infty(10^{n!})^{-1}.$$
References
[1] | J. Liouville, "Sur des classes très étendues de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationelles algébriques" C.R. Acad. Sci. Paris , 18 (1844) pp. 883–885 |
[2] | A.O. Gel'fond, "Transcendental and algebraic numbers" , Dover, reprint (1960) (Translated from Russian) |
Comments
References
[a1] | O. Perron, "Die Lehre von den Kettenbrüchen" , 1 , Teubner (1977) pp. Sect. 35 |
[a2] | O. Perron, "Irrationalzahlen" , Chelsea, reprint (1948) |
How to Cite This Entry:
Liouville number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Liouville_number&oldid=32555
Liouville number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Liouville_number&oldid=32555
This article was adapted from an original article by S.V. Kotov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article