Difference between revisions of "Degenerate kernel"
From Encyclopedia of Mathematics
(Importing text file) |
(LaTeX) |
||
Line 1: | Line 1: | ||
A kernel of a linear Fredholm integral operator (cf. [[Fredholm-operator(2)|Fredholm operator]]) of the form | A kernel of a linear Fredholm integral operator (cf. [[Fredholm-operator(2)|Fredholm operator]]) of the form | ||
− | + | $$ | |
− | + | \sum_{i=1}^N \phi_i(P) \psi_i(Q) | |
− | + | $$ | |
− | where | + | where $P$ and $Q$ are points in Euclidean spaces. |
====Comments==== | ====Comments==== | ||
− | A linear Fredholm integral operator with a square-integrable kernel, considered as an operator on | + | A linear Fredholm integral operator with a square-integrable kernel, considered as an operator on $L_2$, has a finite-dimensional range if and only if its kernel is degenerate. |
Linear Fredholm integral equations of the second kind can be reduced to a system of linear algebraic equations if the kernel is degenerate. | Linear Fredholm integral equations of the second kind can be reduced to a system of linear algebraic equations if the kernel is degenerate. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Hochstadt, "Integral equations" , Wiley (Interscience) (1973) pp. Sect. 2.5</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I.C. Gohberg, S. Goldberg, "Basic operator theory" , Birkhäuser (1981)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> L.V. Kantorovich, V.I. Krylov, "Approximate methods of higher analysis" , Noordhoff (1958) (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff (1958) (Translated from Russian)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Hochstadt, "Integral equations" , Wiley (Interscience) (1973) pp. Sect. 2.5</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> I.C. Gohberg, S. Goldberg, "Basic operator theory" , Birkhäuser (1981)</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> L.V. Kantorovich, V.I. Krylov, "Approximate methods of higher analysis" , Noordhoff (1958) (Translated from Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[a4]</TD> <TD valign="top"> P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff (1958) (Translated from Russian)</TD></TR> | ||
+ | </table> | ||
+ | |||
+ | {{TEX|done}} |
Latest revision as of 17:21, 18 October 2014
A kernel of a linear Fredholm integral operator (cf. Fredholm operator) of the form $$ \sum_{i=1}^N \phi_i(P) \psi_i(Q) $$ where $P$ and $Q$ are points in Euclidean spaces.
Comments
A linear Fredholm integral operator with a square-integrable kernel, considered as an operator on $L_2$, has a finite-dimensional range if and only if its kernel is degenerate.
Linear Fredholm integral equations of the second kind can be reduced to a system of linear algebraic equations if the kernel is degenerate.
References
[a1] | H. Hochstadt, "Integral equations" , Wiley (Interscience) (1973) pp. Sect. 2.5 |
[a2] | I.C. Gohberg, S. Goldberg, "Basic operator theory" , Birkhäuser (1981) |
[a3] | L.V. Kantorovich, V.I. Krylov, "Approximate methods of higher analysis" , Noordhoff (1958) (Translated from Russian) |
[a4] | P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , Integral equations - a reference text , Noordhoff (1958) (Translated from Russian) |
How to Cite This Entry:
Degenerate kernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Degenerate_kernel&oldid=12819
Degenerate kernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Degenerate_kernel&oldid=12819
This article was adapted from an original article by A.B. Bakushinskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article