Difference between revisions of "Dedekind cut"
(Category:Order, lattices, ordered algebraic structures) |
(more general definition) |
||
Line 9: | Line 9: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1953)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1953)</TD></TR></table> | ||
+ | |||
+ | ====Comments==== | ||
+ | More generally we may define a Dedekind cut in any [[totally ordered set]] $X$ to be a partition of $X$ into two non-empty sets $A$ and $B$ whose union is $X$, such that $a<b$ for every $a\in A$ and $b\in B$. | ||
[[Category:Order, lattices, ordered algebraic structures]] | [[Category:Order, lattices, ordered algebraic structures]] |
Revision as of 14:12, 18 October 2014
cut
A subdivision of the set of real (or only of the rational) numbers (of) $\mathbf R$ into two non-empty sets $A$ and $B$ whose union is $\mathbf R$, such that $a<b$ for every $a\in A$ and $b\in B$. A Dedekind cut is denoted by the symbol $A|B$. The set $A$ is called the lower class, while the set $B$ is called the upper class of $A|B$. Dedekind cuts of the set of rational numbers are used in the construction of the theory of real numbers (cf. Real number). The concept of continuity of the real axis can be formulated in terms of Dedekind cuts of real numbers.
Comments
For the construction of $\mathbf R$ from $\mathbf Q$ using cuts see [a1].
References
[a1] | W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1953) |
Comments
More generally we may define a Dedekind cut in any totally ordered set $X$ to be a partition of $X$ into two non-empty sets $A$ and $B$ whose union is $X$, such that $a<b$ for every $a\in A$ and $b\in B$.
Dedekind cut. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dedekind_cut&oldid=33791