Difference between revisions of "Connected component of the identity"
(TeX) |
(Category:Topological groups, Lie groups) |
||
Line 9: | Line 9: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Borel, "Linear algebraic groups" , Benjamin (1969) {{MR|0251042}} {{ZBL|0206.49801}} {{ZBL|0186.33201}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian) {{MR|0201557}} {{ZBL|0022.17104}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Helgason, "Differential geometry and symmetric spaces" , Acad. Press (1962) {{MR|0145455}} {{ZBL|0111.18101}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> A. Borel, "Linear algebraic groups" , Benjamin (1969) {{MR|0251042}} {{ZBL|0206.49801}} {{ZBL|0186.33201}} </TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian) {{MR|0201557}} {{ZBL|0022.17104}} </TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> S. Helgason, "Differential geometry and symmetric spaces" , Acad. Press (1962) {{MR|0145455}} {{ZBL|0111.18101}} </TD></TR> | ||
+ | <TR><TD valign="top">[4]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR> | ||
+ | </table> | ||
+ | |||
+ | [[Category:Topological groups, Lie groups]] |
Latest revision as of 11:16, 18 October 2014
identity component, of a group $G$
The largest connected subset $G^0$ of the topological (or algebraic) group $G$ that contains the identity element of this group. The component $G^0$ is a closed normal subgroup of $G$; the cosets with respect to $G^0$ coincide with the connected components of $G$. The quotient group $G/G^0$ is totally disconnected and Hausdorff, and $G^0$ is the smallest among the normal subgroups $H\subset G$ such that $G/H$ is totally disconnected. If $G$ is locally connected (for example, if $G$ is a Lie group), then $G^0$ is open in $G$ and $G/G^0$ is discrete.
In an arbitrary algebraic group $G$ the identity component $G^0$ is also open and has finite index; also, $G^0$ is the minimal closed subgroup of finite index in $G$. The connected components of an algebraic group $G$ coincide with the irreducible components. For every polynomial homomorphism $\phi$ of algebraic groups one has $\phi(G^0)=\phi(G)^0$. If $G$ is defined over a field, then $G^0$ is defined over this field.
If $G$ is an algebraic group over the field $\mathbf C$, then its identity component $G^0$ coincides with the identity component of $G$ considered as a complex Lie group. If $G$ is defined over $\mathbf R$, then the group $G^0(\mathbf R)$ of real points in $G^0$ is not necessarily connected in the topology of the Lie group $G(\mathbf R)$, but the number of its connected components is finite. For example, the group $\operatorname{GL}_n(\mathbf R)$ splits into two components, although $\operatorname{GL}_n(\mathbf C)$ is connected. The pseudo-orthogonal unimodular group $\operatorname{SO}(p,q)$, which can be regarded as the group of real points of the connected complex algebraic group $\operatorname{SO}_{p+q}(\mathbf C)$, is connected for $p=0$ or $q=0$, and splits into two components for $p,q>0$. However, if the Lie group $G(\mathbf R)$ is compact, then $G^0(\mathbf R)$ is connected.
References
[1] | A. Borel, "Linear algebraic groups" , Benjamin (1969) MR0251042 Zbl 0206.49801 Zbl 0186.33201 |
[2] | L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian) MR0201557 Zbl 0022.17104 |
[3] | S. Helgason, "Differential geometry and symmetric spaces" , Acad. Press (1962) MR0145455 Zbl 0111.18101 |
[4] | I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001 |
Connected component of the identity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Connected_component_of_the_identity&oldid=32483