|
|
Line 1: |
Line 1: |
| + | {{TEX|done}} |
| See [[Number|Number]]. | | See [[Number|Number]]. |
| | | |
| ====Comments==== | | ====Comments==== |
− | An integer is an element of the ring of integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i0512901.png" />. The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i0512902.png" /> is the minimal ring which extends the semi-ring of natural numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i0512903.png" />, cf. [[Natural number|Natural number]]. Cf. [[Number|Number]] for an axiomatic characterization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i0512904.png" />. | + | An integer is an element of the ring of integers $\mathbf Z=\{\dots,-1,0,1,\dots\}$. The ring $\mathbf Z$ is the minimal ring which extends the semi-ring of natural numbers $\mathbf N=\{1,2,\dots\}$, cf. [[Natural number|Natural number]]. Cf. [[Number|Number]] for an axiomatic characterization of $\mathbf N$. |
| | | |
− | In algebraic number theory the term integer is also used to denote elements of an algebraic [[Number field|number field]] that are integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i0512905.png" />. I.e. if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i0512906.png" /> is an algebraic field extension, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i0512907.png" /> is the field of rational numbers, the field of fractions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i0512908.png" />, then the integers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i0512909.png" /> are the elements of the integral closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129010.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129011.png" />, cf. [[Integral extension of a ring|Integral extension of a ring]]. | + | In algebraic number theory the term integer is also used to denote elements of an algebraic [[Number field|number field]] that are integral over $\mathbf Z$. I.e. if $k/\mathbf Q$ is an algebraic field extension, where $\mathbf Q$ is the field of rational numbers, the field of fractions of $\mathbf Z$, then the integers of $k$ are the elements of the integral closure of $\mathbf Z$ in $k$, cf. [[Integral extension of a ring|Integral extension of a ring]]. |
| | | |
− | The integers of the algebraic number field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129013.png" />, are the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129015.png" />. They are called the Gaussian integers. | + | The integers of the algebraic number field $\mathbf Q(i)$, $i^2+1=0$, are the elements $a+bi$, $a,b\in\mathbf Z$. They are called the Gaussian integers. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129016.png" /> be a prime number. A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129018.png" />-adic integer is an element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129019.png" />, the closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129020.png" /> in the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129021.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129022.png" />-adic numbers. The field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129023.png" /> is the topological completion of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129024.png" /> for the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129025.png" />-adic topology on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129026.png" /> which is defined by the non-Archimedean norm | + | Let $p$ be a prime number. A $p$-adic integer is an element of $\mathbf Z_p$, the closure of $\mathbf Z$ in the field $\mathbf Q_p$ of $p$-adic numbers. The field $\mathbf Q_p$ is the topological completion of the field $\mathbf Q$ for the $p$-adic topology on $\mathbf Q$ which is defined by the non-Archimedean norm |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129027.png" /></td> </tr></table>
| + | $$\left|\frac ab\right|_p=p^{\nu_p(b)-\nu_p(a)},\quad a,b\in\mathbf Z,$$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129028.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129029.png" /> divides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129031.png" /> does not divide <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129032.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051290/i05129033.png" />. | + | where $\nu_p(a)=r$ if $p^r$ divides $a$ and $p^{r+1}$ does not divide $a$, and $|0|_p=0$. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1975) (Translated from Russian) (German translation: Birkhäuser, 1966)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1975) (Translated from Russian) (German translation: Birkhäuser, 1966)</TD></TR></table> |
Revision as of 06:47, 18 October 2014
See Number.
An integer is an element of the ring of integers $\mathbf Z=\{\dots,-1,0,1,\dots\}$. The ring $\mathbf Z$ is the minimal ring which extends the semi-ring of natural numbers $\mathbf N=\{1,2,\dots\}$, cf. Natural number. Cf. Number for an axiomatic characterization of $\mathbf N$.
In algebraic number theory the term integer is also used to denote elements of an algebraic number field that are integral over $\mathbf Z$. I.e. if $k/\mathbf Q$ is an algebraic field extension, where $\mathbf Q$ is the field of rational numbers, the field of fractions of $\mathbf Z$, then the integers of $k$ are the elements of the integral closure of $\mathbf Z$ in $k$, cf. Integral extension of a ring.
The integers of the algebraic number field $\mathbf Q(i)$, $i^2+1=0$, are the elements $a+bi$, $a,b\in\mathbf Z$. They are called the Gaussian integers.
Let $p$ be a prime number. A $p$-adic integer is an element of $\mathbf Z_p$, the closure of $\mathbf Z$ in the field $\mathbf Q_p$ of $p$-adic numbers. The field $\mathbf Q_p$ is the topological completion of the field $\mathbf Q$ for the $p$-adic topology on $\mathbf Q$ which is defined by the non-Archimedean norm
$$\left|\frac ab\right|_p=p^{\nu_p(b)-\nu_p(a)},\quad a,b\in\mathbf Z,$$
where $\nu_p(a)=r$ if $p^r$ divides $a$ and $p^{r+1}$ does not divide $a$, and $|0|_p=0$.
References
[a1] | Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1975) (Translated from Russian) (German translation: Birkhäuser, 1966) |
How to Cite This Entry:
Integer. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integer&oldid=11339