Namespaces
Variants
Actions

Difference between revisions of "Simply-periodic function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
(Category:Functions of a complex variable)
 
Line 2: Line 2:
 
''simple periodic function''
 
''simple periodic function''
  
A [[Periodic function|periodic function]] of the complex variable z all periods p of which are integer multiples of a single unique fundamental, or primitive, period 2\omega\neq0, i.e. p=2n\omega (n\in\mathbf Z). For example, the [[Exponential function|exponential function]] e^z is an entire simply-periodic function with fundamental period 2\omega=2\pi i, and the [[Trigonometric functions|trigonometric functions]] \tan z and \operatorname{cotan}z are meromorphic simply-periodic functions with fundamental period 2\omega=\pi.
+
A [[periodic function]] f(z) of the complex variable z all periods p of which are integer multiples of a single unique fundamental, or primitive, period 2\omega\neq0, i.e. p=2n\omega (n\in\mathbf Z). For example, the [[exponential function]] e^z is an entire simply-periodic function with fundamental period 2\omega=2\pi i, and the [[trigonometric functions]] \tan z and \operatorname{cotan}z are meromorphic simply-periodic functions with fundamental period 2\omega=\pi.
  
  
Line 8: Line 8:
 
====Comments====
 
====Comments====
 
More generally, a simply-periodic function on a linear space X is a periodic function whose periods are integer multiples of some basic period 2\omega\in X. A non-constant continuous periodic function of a real variable is necessarily simply-periodic.
 
More generally, a simply-periodic function on a linear space X is a periodic function whose periods are integer multiples of some basic period 2\omega\in X. A non-constant continuous periodic function of a real variable is necessarily simply-periodic.
 +
 +
See also [[Double-periodic function]]
 +
 +
[[Category:Functions of a complex variable]]

Latest revision as of 18:55, 17 October 2014

simple periodic function

A periodic function f(z) of the complex variable z all periods p of which are integer multiples of a single unique fundamental, or primitive, period 2\omega\neq0, i.e. p=2n\omega (n\in\mathbf Z). For example, the exponential function e^z is an entire simply-periodic function with fundamental period 2\omega=2\pi i, and the trigonometric functions \tan z and \operatorname{cotan}z are meromorphic simply-periodic functions with fundamental period 2\omega=\pi.


Comments

More generally, a simply-periodic function on a linear space X is a periodic function whose periods are integer multiples of some basic period 2\omega\in X. A non-constant continuous periodic function of a real variable is necessarily simply-periodic.

See also Double-periodic function

How to Cite This Entry:
Simply-periodic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Simply-periodic_function&oldid=31936
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article