Namespaces
Variants
Actions

Difference between revisions of "Universal series"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
Line 1: Line 1:
 +
{{TEX|done}}
 
A [[Series|series]] of functions
 
A [[Series|series]] of functions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095740/u0957401.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$\sum_{i=1}^\infty\phi_i(x),\quad x\in[a,b],\tag{1}$$
  
by means of which all functions of a given class can be represented in some way or other. For example, there exists a series (1) such that every continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095740/u0957402.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095740/u0957403.png" /> can be approximated by partial sums of this series, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095740/u0957404.png" />, converging uniformly to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095740/u0957405.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095740/u0957406.png" />.
+
by means of which all functions of a given class can be represented in some way or other. For example, there exists a series \ref{1} such that every continuous function $f$ on $[a,b]$ can be approximated by partial sums of this series, $\sum_{i=1}^{n_k}\phi_i(x)$, converging uniformly to $f(x)$ on $[a,b]$.
  
 
There exist trigonometric series
 
There exist trigonometric series
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095740/u0957407.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$\frac{a_0}{2}+\sum_{i=1}^\infty(a_i\cos ix+b_i\sin ix),\tag{2}$$
  
with coefficients tending to zero, such that every (Lebesgue-) measurable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095740/u0957408.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095740/u0957409.png" /> has an approximation by partial sums of the series (2), converging to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095740/u09574010.png" /> almost everywhere.
+
with coefficients tending to zero, such that every (Lebesgue-) measurable function $f$ on $[0,2\pi]$ has an approximation by partial sums of the series \ref{2}, converging to $f(x)$ almost everywhere.
  
The given series is called universal relative to approximation by partial sums. One may consider other definitions of universal series. For example, series (1) which are universal relative to subseries <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095740/u09574011.png" /> or relative to permutations of the terms of (1).
+
The given series is called universal relative to approximation by partial sums. One may consider other definitions of universal series. For example, series \ref{1} which are universal relative to subseries $\sum_{k=1}^\infty\phi_{i_k}(x)$ or relative to permutations of the terms of \ref{1}.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G. Alexits,  "Convergence problems of orthogonal series" , Pergamon  (1961)  (Translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.K. [N.K. Bari] Bary,  "A treatise on trigonometric series" , Pergamon  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.A. Talalyan,  "The representation of measurable functions by series"  ''Russian Math. Surveys'' , '''15''' :  5  (1960)  pp. 75–136  ''Uspekhi Mat. Nauk'' , '''15''' :  5  (1960)  pp. 77–141</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G. Alexits,  "Convergence problems of orthogonal series" , Pergamon  (1961)  (Translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.K. [N.K. Bari] Bary,  "A treatise on trigonometric series" , Pergamon  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.A. Talalyan,  "The representation of measurable functions by series"  ''Russian Math. Surveys'' , '''15''' :  5  (1960)  pp. 75–136  ''Uspekhi Mat. Nauk'' , '''15''' :  5  (1960)  pp. 77–141</TD></TR></table>

Revision as of 19:21, 9 October 2014

A series of functions

$$\sum_{i=1}^\infty\phi_i(x),\quad x\in[a,b],\tag{1}$$

by means of which all functions of a given class can be represented in some way or other. For example, there exists a series \ref{1} such that every continuous function $f$ on $[a,b]$ can be approximated by partial sums of this series, $\sum_{i=1}^{n_k}\phi_i(x)$, converging uniformly to $f(x)$ on $[a,b]$.

There exist trigonometric series

$$\frac{a_0}{2}+\sum_{i=1}^\infty(a_i\cos ix+b_i\sin ix),\tag{2}$$

with coefficients tending to zero, such that every (Lebesgue-) measurable function $f$ on $[0,2\pi]$ has an approximation by partial sums of the series \ref{2}, converging to $f(x)$ almost everywhere.

The given series is called universal relative to approximation by partial sums. One may consider other definitions of universal series. For example, series \ref{1} which are universal relative to subseries $\sum_{k=1}^\infty\phi_{i_k}(x)$ or relative to permutations of the terms of \ref{1}.

References

[1] G. Alexits, "Convergence problems of orthogonal series" , Pergamon (1961) (Translated from German)
[2] N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)
[3] A.A. Talalyan, "The representation of measurable functions by series" Russian Math. Surveys , 15 : 5 (1960) pp. 75–136 Uspekhi Mat. Nauk , 15 : 5 (1960) pp. 77–141
How to Cite This Entry:
Universal series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Universal_series&oldid=18101
This article was adapted from an original article by S.A. Telyakovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article