Namespaces
Variants
Actions

Difference between revisions of "Cosecant"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
Line 1: Line 1:
 +
{{TEX|done}}
 
One of the [[Trigonometric functions|trigonometric functions]]:
 
One of the [[Trigonometric functions|trigonometric functions]]:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026610/c0266101.png" /></td> </tr></table>
+
$$y=\operatorname{cosec}x=\frac{1}{\sin x};$$
  
other notations are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026610/c0266102.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026610/c0266103.png" />. The domain of definition is the entire real line with the exception of the points with abscissas
+
other notations are $\csc x$, $\operatorname{cosc}x$. The domain of definition is the entire real line with the exception of the points with abscissas
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026610/c0266104.png" /></td> </tr></table>
+
$$x=\pi n,\quad n=0,\pm1,\pm2,\mathinner{\ldotp\ldotp\ldotp\ldotp}$$
  
The cosecant is an unbounded odd periodic function (with period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026610/c0266105.png" />). Its derivative is:
+
The cosecant is an unbounded odd periodic function (with period $2\pi$). Its derivative is:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026610/c0266106.png" /></td> </tr></table>
+
$$(\operatorname{cosec}x)'=-\frac{\cos x}{\sin^2x}=-\operatorname{cotg}x\operatorname{cosec}x.$$
  
 
The integral of the cosecant is:
 
The integral of the cosecant is:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026610/c0266107.png" /></td> </tr></table>
+
$$\int\operatorname{cosec}xdx=\ln\left|\operatorname{tg}\frac x2\right|+C.$$
  
 
The series expansion is:
 
The series expansion is:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026610/c0266108.png" /></td> </tr></table>
+
$$\operatorname{cosec}x=\frac1x+\frac x6+\frac{7x^3}{360}+\frac{31x^5}{15120}+\dots,\quad0<|x|<\pi.$$
  
  

Revision as of 10:34, 6 September 2014

One of the trigonometric functions:

$$y=\operatorname{cosec}x=\frac{1}{\sin x};$$

other notations are $\csc x$, $\operatorname{cosc}x$. The domain of definition is the entire real line with the exception of the points with abscissas

$$x=\pi n,\quad n=0,\pm1,\pm2,\mathinner{\ldotp\ldotp\ldotp\ldotp}$$

The cosecant is an unbounded odd periodic function (with period $2\pi$). Its derivative is:

$$(\operatorname{cosec}x)'=-\frac{\cos x}{\sin^2x}=-\operatorname{cotg}x\operatorname{cosec}x.$$

The integral of the cosecant is:

$$\int\operatorname{cosec}xdx=\ln\left|\operatorname{tg}\frac x2\right|+C.$$

The series expansion is:

$$\operatorname{cosec}x=\frac1x+\frac x6+\frac{7x^3}{360}+\frac{31x^5}{15120}+\dots,\quad0<|x|<\pi.$$


Comments

See also Sine.

How to Cite This Entry:
Cosecant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cosecant&oldid=15051
This article was adapted from an original article by Yu.A. Gor'kov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article