Namespaces
Variants
Actions

Difference between revisions of "Reduced system of residues"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
Line 1: Line 1:
''reduced residue system, modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080380/r0803803.png" />''
+
{{TEX|done}}
 +
''reduced residue system, modulo $m$''
  
A set of numbers from a [[Complete system of residues|complete system of residues]] modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080380/r0803804.png" /> that are mutually prime with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080380/r0803805.png" />. A reduced residue system modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080380/r0803806.png" /> consists of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080380/r0803807.png" /> numbers, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080380/r0803808.png" /> is Euler's <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080380/r0803809.png" />-function (cf. [[Euler function|Euler function]]). One usually takes the numbers mutually prime with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080380/r08038010.png" /> in the complete residue system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080380/r08038011.png" /> as reduced residue system.
+
A set of numbers from a [[Complete system of residues|complete system of residues]] modulo $m$ that are mutually prime with $m$. A reduced residue system modulo $m$ consists of $\phi(m)$ numbers, where $\phi(m)$ is Euler's $\phi$-function (cf. [[Euler function|Euler function]]). One usually takes the numbers mutually prime with $m$ in the complete residue system $0,\ldots,m-1$ as reduced residue system.

Revision as of 17:02, 11 April 2014

reduced residue system, modulo $m$

A set of numbers from a complete system of residues modulo $m$ that are mutually prime with $m$. A reduced residue system modulo $m$ consists of $\phi(m)$ numbers, where $\phi(m)$ is Euler's $\phi$-function (cf. Euler function). One usually takes the numbers mutually prime with $m$ in the complete residue system $0,\ldots,m-1$ as reduced residue system.

How to Cite This Entry:
Reduced system of residues. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Reduced_system_of_residues&oldid=13499
This article was adapted from an original article by S.A. Stepanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article