Difference between revisions of "Weber function"
(Importing text file) |
m |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | {{MSC|34}} | ||
+ | {{TEX|done}} | ||
+ | |||
The function | The function | ||
+ | \[ | ||
+ | {\bf E}_\nu (x) = \frac{1}{\pi} \int_0^\pi \sin\, (\nu \theta - x \sin \theta)\, d\theta | ||
+ | \] | ||
+ | where $x$ is a complex variable and $\nu$ a complex parameter, first studied by Weber in {{Cite|We}}. The term Weber function | ||
+ | is also used sometimes for the [[Cylinder functions|cylinder function]] of second type $Y_\nu$ (also called Bessel functions of second type or Neumann functions and denoted sometimes by $N_\nu$). | ||
− | + | The Weber function satisfies the inhomogeneous [[Bessel equation|Bessel equation]] | |
− | + | \[ | |
− | + | x^2 y'' + xy' + (x^2 - \nu^2) y = - \frac{1}{\pi} \left( x+ \nu + (x-\nu) \cos \nu\pi\right)\, | |
− | + | \] | |
− | + | (see 10.12 in {{Cite|Wa}}). | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | When the parameter $\nu$ is not an integer, the Weber function has the following expansion: | |
+ | \[ | ||
+ | {\bf E}_\nu (x) = \frac{1-\cos \nu\pi}{\nu \pi} \left[ 1 - \frac{x^2}{2^2-\nu^2} + \frac{x^4}{(2^2-\nu^2)(4^2 - \nu^2)} + \ldots \right] | ||
+ | - \frac{1-\cos \nu\pi}{\pi}\left[ \frac{x}{1-\nu^2} - \frac{x^3}{(1-\nu^2) (3^2-\nu^2)} + \ldots \right] | ||
+ | \] | ||
+ | If $|x|$ is large and $|{\rm arg}\, x|< \frac{\pi}{2}$, the following asymptotic expansion is valid: | ||
+ | \[ | ||
+ | {\bf E_\nu} (x) = - Y_\nu (x) - \frac{1+\cos \nu\pi}{\pi x} \left[1 - \frac{1-\nu^2}{x^2} + | ||
+ | \frac{(1-\nu^2)(3^2-\nu^2)}{x^4} + \ldots \right] - \nu \frac{1-\cos \nu\pi}{\pi x} \left[ | ||
+ | \frac{1}{x} - \frac{2^2 - \nu^2}{x^3} + \frac{(2^2-\nu^2)(4^2-\nu^2)}{x^5} + \ldots \right]\, . | ||
+ | \] | ||
+ | where $Y_\nu$ is the [[Neumann function|Neumann function]]. If $\nu$ is not an integer, the Weber function is related to the [[Anger function|Anger function]] ${\bf J}_\nu$ by the following equations: | ||
+ | \begin{align} | ||
+ | & \sin \nu\pi\, {\bf J}_\nu (x) = \cos \nu \pi\, {\bf E}_\nu (x) - {\bf E}_{-\nu} (x)\\ | ||
+ | & \sin \nu\pi\, {\bf E}_\nu (x) = {\bf J}_{-\nu} (x) - \cos \nu\pi\, {\bf J}_\nu (x)\, | ||
+ | \end{align} | ||
+ | (cf. 10.11 in {{Cite|Wa}}). | ||
====References==== | ====References==== | ||
− | + | {| | |
+ | |- | ||
+ | |valign="top"|{{Ref|Wa}}||valign="top"| G.N. Watson, "A treatise on the theory of Bessel functions", '''1–2''', Cambridge Univ. Press (1952) {{MR|1349110}} {{MR|1570252}} {{MR|0010746}} {{MR|1520278}} {{ZBL|0849.33001}} {{ZBL|0174.36202}} {{ZBL|0063.08184}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|We}}||valign="top"| H.F. Weber, ''Zurich Vierteljahresschrift'' , '''24''' (1879) pp. 33–76 | ||
+ | |- | ||
+ | |} |
Latest revision as of 09:12, 22 February 2014
2020 Mathematics Subject Classification: Primary: 34-XX [MSN][ZBL]
The function \[ {\bf E}_\nu (x) = \frac{1}{\pi} \int_0^\pi \sin\, (\nu \theta - x \sin \theta)\, d\theta \] where $x$ is a complex variable and $\nu$ a complex parameter, first studied by Weber in [We]. The term Weber function is also used sometimes for the cylinder function of second type $Y_\nu$ (also called Bessel functions of second type or Neumann functions and denoted sometimes by $N_\nu$).
The Weber function satisfies the inhomogeneous Bessel equation \[ x^2 y'' + xy' + (x^2 - \nu^2) y = - \frac{1}{\pi} \left( x+ \nu + (x-\nu) \cos \nu\pi\right)\, \] (see 10.12 in [Wa]).
When the parameter $\nu$ is not an integer, the Weber function has the following expansion: \[ {\bf E}_\nu (x) = \frac{1-\cos \nu\pi}{\nu \pi} \left[ 1 - \frac{x^2}{2^2-\nu^2} + \frac{x^4}{(2^2-\nu^2)(4^2 - \nu^2)} + \ldots \right] - \frac{1-\cos \nu\pi}{\pi}\left[ \frac{x}{1-\nu^2} - \frac{x^3}{(1-\nu^2) (3^2-\nu^2)} + \ldots \right] \] If $|x|$ is large and $|{\rm arg}\, x|< \frac{\pi}{2}$, the following asymptotic expansion is valid: \[ {\bf E_\nu} (x) = - Y_\nu (x) - \frac{1+\cos \nu\pi}{\pi x} \left[1 - \frac{1-\nu^2}{x^2} + \frac{(1-\nu^2)(3^2-\nu^2)}{x^4} + \ldots \right] - \nu \frac{1-\cos \nu\pi}{\pi x} \left[ \frac{1}{x} - \frac{2^2 - \nu^2}{x^3} + \frac{(2^2-\nu^2)(4^2-\nu^2)}{x^5} + \ldots \right]\, . \] where $Y_\nu$ is the Neumann function. If $\nu$ is not an integer, the Weber function is related to the Anger function ${\bf J}_\nu$ by the following equations: \begin{align} & \sin \nu\pi\, {\bf J}_\nu (x) = \cos \nu \pi\, {\bf E}_\nu (x) - {\bf E}_{-\nu} (x)\\ & \sin \nu\pi\, {\bf E}_\nu (x) = {\bf J}_{-\nu} (x) - \cos \nu\pi\, {\bf J}_\nu (x)\, \end{align} (cf. 10.11 in [Wa]).
References
[Wa] | G.N. Watson, "A treatise on the theory of Bessel functions", 1–2, Cambridge Univ. Press (1952) MR1349110 MR1570252 MR0010746 MR1520278 Zbl 0849.33001 Zbl 0174.36202 Zbl 0063.08184 |
[We] | H.F. Weber, Zurich Vierteljahresschrift , 24 (1879) pp. 33–76 |
Weber function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weber_function&oldid=13892