Difference between revisions of "Kummer criterion"
(Importing text file) |
|||
Line 1: | Line 1: | ||
− | + | {{MSC|40A05}} | |
+ | {{TEX|done}} | ||
− | + | A general convergence criterion for series with positive terms, proposed by E. Kummer. Let | |
+ | \begin{equation}\label{e:series} | ||
+ | \sum_n a_n | ||
+ | \end{equation} | ||
+ | be a series of positive numbers and $\{c_n\}$ a sequence of positive numbers. If there are $\delta >0$ and $N$ such that | ||
+ | \[ | ||
+ | K_n := c_n \frac{a_n}{a_{n+1}} - c_{n+1} \geq \delta \qquad \forall n\geq N\, , | ||
+ | \] | ||
+ | then \eqref{e:series} converges. If the series $\sum_n (c_n)^{-1}$ diverges and there is $N$ such that $K_n \leq 0$ for all $n\geq N$, then \eqref{e:series} diverges. | ||
− | + | An obvious corollary is that, when the limit | |
− | + | \[ | |
− | + | K := \lim_{n\to \infty} K_n | |
− | + | \] | |
− | + | exists we have: | |
− | + | * if $K>0$ \eqref{e:series} converges | |
− | + | * if $K<0$ and $\sum_n (c_n)^{-1}$ diverges, then \eqref{e:series} diverges. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
====References==== | ====References==== | ||
− | + | {| | |
+ | |- | ||
+ | |valign="top"|{{Ref|Fi}}|| G.M. Fichtenholz, "Differential und Integralrechnung" , '''1''' , Deutsch. Verlag Wissenschaft. (1964) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Ra}}|| E.D. Rainville, "Infinite series" , Macmillan (1967) | ||
+ | |- | ||
+ | |} |
Latest revision as of 11:25, 10 December 2013
2020 Mathematics Subject Classification: Primary: 40A05 [MSN][ZBL]
A general convergence criterion for series with positive terms, proposed by E. Kummer. Let \begin{equation}\label{e:series} \sum_n a_n \end{equation} be a series of positive numbers and $\{c_n\}$ a sequence of positive numbers. If there are $\delta >0$ and $N$ such that \[ K_n := c_n \frac{a_n}{a_{n+1}} - c_{n+1} \geq \delta \qquad \forall n\geq N\, , \] then \eqref{e:series} converges. If the series $\sum_n (c_n)^{-1}$ diverges and there is $N$ such that $K_n \leq 0$ for all $n\geq N$, then \eqref{e:series} diverges.
An obvious corollary is that, when the limit \[ K := \lim_{n\to \infty} K_n \] exists we have:
- if $K>0$ \eqref{e:series} converges
- if $K<0$ and $\sum_n (c_n)^{-1}$ diverges, then \eqref{e:series} diverges.
References
[Fi] | G.M. Fichtenholz, "Differential und Integralrechnung" , 1 , Deutsch. Verlag Wissenschaft. (1964) |
[Ra] | E.D. Rainville, "Infinite series" , Macmillan (1967) |
Kummer criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kummer_criterion&oldid=14698