Namespaces
Variants
Actions

Difference between revisions of "Cauchy criteria"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (texing wanted)
Line 1: Line 1:
 +
{{MSC|40A05}}
 +
{{TEX|done}}
  
{{TEX|want}}
+
===The elementary Cauchy criterion for sequences of real numbers===
 +
The Cauchy criterion is a characterization of convergent sequences of real numbers. More precisely it states that
  
The Cauchy criterion on the convergence of a sequence of numbers: A sequence of (real or complex) numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c0208301.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c0208302.png" /> converges to a limit if and only if, given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c0208303.png" />, there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c0208304.png" /> such that, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c0208305.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c0208306.png" />,
+
'''Theorem 1'''
 +
A sequence $\{a_n\}$ of real numbers has a finite limit if and only if for every $\varepsilon > 0$ there is an $N$ such that  
 +
\begin{equation}\label{e:cauchy}
 +
|a_n-a_m| < \varepsilon \qquad \mbox{for every}\;\;  n,m \geq N\, .
 +
\end{equation}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c0208307.png" /></td> </tr></table>
+
The latter is often called the Cauchy condition and a sequence which satisfies it is called [[Cauchy sequence]]. An intuitive way of thinking about a Cauchy sequence is that it oscillates less and less. More precisely we could introduce the oscillation after the $N$-th element as
 +
\[
 +
O (N) := \sup \big\{ |a_n-a_m| : n,m\geq N\big\}\,
 +
\]
 +
and hence the Cauchy condition is equivalent to $\lim_{N\to\infty} O(N) = 0$. Probably the most interesting part of Theorem 1 is that the Cauchy condition implies the existence of the limit: this is indeed related to the [[Completeness (in topology)| completeness]] of the real line.
  
The Cauchy criterion on the convergence of a sequence of numbers may be generalized to a criterion on the convergence of points in a complete metric space.
+
The Cauchy criterion can be generalized to a variety of situations, which can all be loosely summarized as "a vanishing oscillation condition is equivalent to convergence".
  
A sequence of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c0208308.png" /> of a complete metric space is convergent if and only if, given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c0208309.png" />, there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083010.png" /> such that, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083012.png" />, the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083013.png" /> holds.
+
===Generalizations to real valued maps===
 +
====Cauchy criterion for series====
 +
Consider a series $\sum_i a_i$ of real numbers. The convergence of the series is by definition the convergence of the sequence of its partial sums
 +
\[
 +
S_j := \sum_{i=0}^j a_i\, .
 +
\]
 +
Thus a straightforward consequence of Theorem 1 is that $\sum_i a_i$ is a convergent series if and only if the sequence $\{S_i\}$ satisfies the Cauchy condition.
  
The Cauchy criterion on the existence of a limit of a function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083014.png" /> variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083015.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083016.png" /> be a function defined on a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083017.png" /> in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083018.png" />-dimensional space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083019.png" />, taking real or complex values, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083020.png" /> be a limit point of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083021.png" /> (or the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083022.png" />, in which case the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083023.png" /> is unbounded). There exists a finite limit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083024.png" /> if and only if, given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083025.png" />, there exists a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083026.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083027.png" /> such that, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083028.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083029.png" />,
+
====Cauchy criterion for real-valued functions====
 +
Consider a function $f: A \to \mathbb R$, where $A$ is a subset of the real numbers. Assume $p$ is an [[Accumulation point|accumulation point]] of $A$ (observe that $p$ does not necessarily belong to $A$). We can then introduce the oscillation around $p$ of $f$ as
 +
\[
 +
{\rm osc}\, (f, p, \varepsilon) := \sup \big\{|f(x)-f(y)|: x,y\in (A\setminus \{p\}) \cap ]p-\varepsilon, p+\varepsilon[\big\}\, .
 +
\]
 +
The Cauchy criterion states that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083030.png" /></td> </tr></table>
+
'''Theorem 2'''
 +
The following limit exists and is finite
 +
\begin{equation}\label{e:limit_cont}
 +
\lim_{x\in A, x\to p} f(x)
 +
\end{equation}
 +
if and only if
 +
\[
 +
\lim_{\varepsilon\downarrow 0}\; {\rm osc}\, (f, p, \varepsilon) = 0\, .
 +
\]
  
This criterion may be generalized to more general mappings: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083031.png" /> be a topological space, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083032.png" /> a limit point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083033.png" /> at which the first axiom of countability is valid, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083034.png" /> a complete metric space, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083035.png" /> a mapping of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083036.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083037.png" />. Then the limit
+
Analogous statements for $\lim_{x\to\pm \infty}$ hold as well. Since the existence of the limit \eqref{e:limit_cont} can be characterized in terms of sequences, Theorem 2 can be easily reduced to Theorem 1. Theorem 2 can be generalized to maps on a general topological space. For this reason, given a set $A$ and a map $f:A \to \mathbb R$ we define the oscillation of $f$ in $A$ as
 +
\[
 +
{\rm osc}\, (f, A) := \sup \big\{ |f(x)-f(y)|:x,y\in A \big\}\, .
 +
\]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083038.png" /></td> </tr></table>
+
'''Theorem 3'''
 +
Let $X$ be a topological space, $A\subset X$, $f: A \to \mathbb R$ and $p$ an accumulation point of $A$. Then the following limit exists and is finite
 +
\[
 +
\lim_{x\in A, x\to p} f(x)\,
 +
\]
 +
if and only if for every $\varepsilon >0$ there is a neighborhood $U$ of $p$ such that
 +
\[
 +
{\rm osc}\, (f, (A\cap U)\setminus \{p\}) < \varepsilon\, .
 +
\]
  
exists if and only if, given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083039.png" />, there exists a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083040.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083041.png" /> such that, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083042.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083043.png" />,
+
Observe that Theorem 1 can be considered as a particular case of Theorem 1. In fact, consider set $X = \mathbb N \cup \{\infty\}$ endowed with the topology
 +
\[
 +
\tau = \Big\{\emptyset, X\Big\} \cup \Big\{\big\{i\in \mathbb N: i\geq j\big\}\cup \big\{\infty\big\} : j \in \mathbb N \Big\}\, .
 +
\]
 +
A sequence $\{a_i\}$ can be considered as a map $a: \mathbb N \to \mathbb R$. Then the existence of the limit of the sequence is equivalent to the existence of the limit at $\infty$ of the map $a$ on the (subset $A$ of the) topological space $X$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083044.png" /></td> </tr></table>
+
====Cauchy criterion for improper integrals====
 +
Let $I= [a,b]$ be an interval of the real line and $f:[a,b]\to \mathbb R$ a function which is Riemann (or Lebesgue) integrable on $[a+\varepsilon, b]$ for every $\varepsilon >0$. The [[Improper integral|improper integral]] of $f$ on $I$ is defined as
 +
\[
 +
\int_a^b f(x)\, dx = \lim_{\varepsilon\downarrow 0} \int_{a+\varepsilon}^b f(x)\, dx\, ,
 +
\]
 +
if the latter limit exists.
 +
Similar definitions can be introduced when the function is integrable over intervals of the form $[a, b-\varepsilon]$ or $[a+\delta, b-\varepsilon]$ and when $a=-\infty$ and/or $b=\infty$ (see [[Improper integral]]). If we introduce
 +
\[
 +
F(\varepsilon) := \int_{a+\varepsilon}^b f(x)\, dx
 +
\]
 +
the improper integral is simply $\lim_{\varepsilon\downarrow 0} F(\varepsilon)$ and its existence can therefore be characterized using Theorem 2. For a thorough statement (and all its variants) see [[Improper integral]].
  
The Cauchy criterion on the uniform convergence of a family of functions. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083045.png" /> be a set, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083046.png" /> a topological space with a limit point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083047.png" /> at which the first axiom of countability holds, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083048.png" /> a complete metric space, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083049.png" /> a mapping of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083050.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083051.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083052.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083053.png" />. Then the family of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083054.png" /> mapping, for a fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083055.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083056.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083057.png" /> is uniformly convergent on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083058.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083059.png" /> if, given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083060.png" />, there exists a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083061.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083062.png" /> such that, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083063.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083064.png" /> and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083065.png" />,
+
===Euclidean spaces===
 +
All the statements above are valid for sequences and series of vectors in $\mathbb R^n$, for functions taking values in $\mathbb R^n$ and for improper integrals of such functions.  
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083066.png" /></td> </tr></table>
+
===Complete metric spaces and Banach spaces===
 +
If $(X,d)$ is a [[Metric space|metric space]], then a Cauchy sequence on $X$ is a sequence $\{x_i\}\subset X$ such that for any $\varepsilon > 0$ there exists an $N$ such that
 +
\[
 +
d(x_n,x_m) < \varepsilon \qquad \forall n,m \geq N\, .
 +
\]
 +
Similarly, one can define a Cauchy sequence in a [[Norm|normed vector space]] using the induced metric. Any convergent sequence in any metric space is necessarily a Cauchy sequence. However, in general metric space not all Cauchy sequences necessarily converge. Those metric spaces for which any Cauchy sequence has a limit are called [[Complete metric space|complete]] and the corresponding versions of Theorem 3 hold. A complete normed vector space is called a [[Banach space]].
  
In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083067.png" /> is the set of natural numbers and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083068.png" />, then the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083069.png" /> is uniformly convergent on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083070.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083071.png" /> if and only if, given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083072.png" />, there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083073.png" /> such that, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083074.png" /> and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083075.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083076.png" />,
+
===Cauchy filters and uniform spaces===
 +
A generalization of the concept of Cauchy sequence is that of [[Cauchy filter]] in a [[uniform space|Uniform space]], to which a corresponding notion of [[Complete uniform space|completeness]] is attached.  
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083077.png" /></td> </tr></table>
+
===References===
 
+
{|
The Cauchy criterion on the convergence of a series: A series of real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083078.png" /> is convergent if and only if, given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083079.png" />, there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083080.png" /> such that, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083081.png" /> and all integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083082.png" />,
+
|-
 
+
|valign="top"|{{Ref|Ca}}|| A.L. Cauchy,  "Analyse algébrique" , Gauthier-Villars  (1821)  (German translation: Springer, 1885)
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083083.png" /></td> </tr></table>
+
|-
 
+
|valign="top"|{{Ref|Di}}|| J.A. Dieudonné,  "Foundations of modern analysis" , Acad. Press  (1961)  (Translated from French)
The analogue of this criterion for multiple series is known as the Cauchy–Stolz criterion. For example, a double series
+
|-
 
+
|valign="top"|{{Ref|IP}}|| V.A. Il'in,  E.G. Poznyak,  "Fundamentals of mathematical analysis" , '''1–2''' , MIR  (1971–1973)  (Translated from Russian)
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083084.png" /></td> </tr></table>
+
|-
 
+
|valign="top"|{{Ref|Ku}}|| L.D. Kudryavtsev,  "A course in mathematical analysis" , '''1–2''' , Moscow  (1981)  (In Russian)
is convergent in the sense of convergence of rectangular partial sums
+
|-
 
+
|valign="top"|{{Ref|Ni}}|| S.M. Nikol'skii,  "A course of mathematical analysis" , '''1–2''' , MIR  (1977)  (Translated from Russian)
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083085.png" /></td> </tr></table>
+
|-
 
+
|valign="top"|{{Ref|Ru}}||  W. Rudin,  "Principles of mathematical analysis" , McGraw-Hill  (1976)
if and only if, given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083086.png" />, there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083087.png" /> such that, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083088.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083089.png" /> and all integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083090.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083091.png" />,
+
|-
 
+
|valign="top"|{{Ref|St}}|| O. Stolz,  ''Math. Ann.'' , '''24'''  (1884) pp. 154–171
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083092.png" /></td> </tr></table>
+
|-
 
+
|valign="top"|{{Ref|WW}}|| E.T. Whittaker,  G.N. Watson,  "A course of modern analysis" , Cambridge Univ. Press  (1952)
These criteria generalize to series in Banach spaces (with absolute values replaced by the appropriate norms of the elements).
+
|-
 
+
|}
The Cauchy criterion on the uniform convergence of a series: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083093.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083094.png" /> be functions defined on some set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083095.png" /> and taking real values. The series
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083096.png" /></td> </tr></table>
 
 
 
is uniformly convergent on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083097.png" /> if and only if, given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083098.png" />, there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c02083099.png" /> such that, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830100.png" />, all integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830101.png" /> and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830102.png" />,
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830103.png" /></td> </tr></table>
 
 
 
This criterion also carries over to multiple series, and moreover not only with numerical terms but also with terms in Banach spaces, i.e. to series in which the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830104.png" /> are mappings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830105.png" /> into a Banach space.
 
 
 
The Cauchy criterion on the convergence of improper integrals: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830106.png" /> be a function defined on a half-closed interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830107.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830108.png" />, taking numerical values. Suppose that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830109.png" /> the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830110.png" /> is (Riemann- or Lebesgue-) integrable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830111.png" />. Then the improper integral
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830112.png" /></td> </tr></table>
 
 
 
is convergent if and only if, given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830113.png" />, there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830114.png" /> such that, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830115.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830116.png" /> satisfying the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830117.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830118.png" />,
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830119.png" /></td> </tr></table>
 
 
 
The criterion can be formulated in an analogous way for improper integrals of other types, and it also generalizes to the case in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830120.png" /> depends on several variables and assumes values in a Banach space.
 
 
 
The Cauchy criterion on the uniform convergence of improper integrals: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830121.png" /> be some set and suppose that, for every fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830122.png" />, the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830123.png" /> is defined on a half-closed interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830124.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830125.png" />, and takes numerical values. Suppose that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830126.png" /> the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830127.png" /> is integrable with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830128.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830129.png" />. Then the integral
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830130.png" /></td> </tr></table>
 
 
 
is uniformly convergent on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830131.png" /> if and only if, given any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830132.png" />, there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830133.png" /> such that, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830134.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830135.png" /> satisfying the conditions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830136.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830137.png" />, and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830138.png" />,
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020830/c020830139.png" /></td> </tr></table>
 
 
 
This criterion also carries over to improper integrals of other types, to functions of several variables and to functions taking values in Banach spaces.
 
 
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.L. Cauchy,  "Analyse algébrique" , Gauthier-Villars  (1821)  (German translation: Springer, 1885)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  O. Stolz,  ''Math. Ann.'' , '''24'''  (1884)  pp. 154–171</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J.A. Dieudonné,  "Foundations of modern analysis" , Acad. Press  (1961)  (Translated from French)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.A. Il'in,  E.G. Poznyak,  "Fundamentals of mathematical analysis" , '''1–2''' , MIR  (1971–1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> L.D. Kudryavtsev,  "A course in mathematical analysis" , '''1–2''' , Moscow  (1981)  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> S.M. Nikol'skii,  "A course of mathematical analysis" , '''1–2''' , MIR  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> E.T. Whittaker,  G.N. Watson,  "A course of modern analysis" , Cambridge Univ. Press  (1952) pp. Chapt. 6</TD></TR></table>
 
 
 
 
 
 
 
====Comments====
 
The criterion in 1) can be reformulated as: A sequence of numbers is convergent if and only if it is a [[Cauchy sequence|Cauchy sequence]] (see also [[#References|[a1]]]). This property of sequences of elements of a metric space is often taken as a definition of completeness of the latter: A metric space is called complete if every Cauchy sequence in it converges.
 
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Rudin,  "Principles of mathematical analysis" , McGraw-Hill  (1976)</TD></TR></table>
 

Revision as of 19:59, 8 December 2013

2020 Mathematics Subject Classification: Primary: 40A05 [MSN][ZBL]

The elementary Cauchy criterion for sequences of real numbers

The Cauchy criterion is a characterization of convergent sequences of real numbers. More precisely it states that

Theorem 1 A sequence $\{a_n\}$ of real numbers has a finite limit if and only if for every $\varepsilon > 0$ there is an $N$ such that \begin{equation}\label{e:cauchy} |a_n-a_m| < \varepsilon \qquad \mbox{for every}\;\; n,m \geq N\, . \end{equation}

The latter is often called the Cauchy condition and a sequence which satisfies it is called Cauchy sequence. An intuitive way of thinking about a Cauchy sequence is that it oscillates less and less. More precisely we could introduce the oscillation after the $N$-th element as \[ O (N) := \sup \big\{ |a_n-a_m| : n,m\geq N\big\}\, \] and hence the Cauchy condition is equivalent to $\lim_{N\to\infty} O(N) = 0$. Probably the most interesting part of Theorem 1 is that the Cauchy condition implies the existence of the limit: this is indeed related to the completeness of the real line.

The Cauchy criterion can be generalized to a variety of situations, which can all be loosely summarized as "a vanishing oscillation condition is equivalent to convergence".

Generalizations to real valued maps

Cauchy criterion for series

Consider a series $\sum_i a_i$ of real numbers. The convergence of the series is by definition the convergence of the sequence of its partial sums \[ S_j := \sum_{i=0}^j a_i\, . \] Thus a straightforward consequence of Theorem 1 is that $\sum_i a_i$ is a convergent series if and only if the sequence $\{S_i\}$ satisfies the Cauchy condition.

Cauchy criterion for real-valued functions

Consider a function $f: A \to \mathbb R$, where $A$ is a subset of the real numbers. Assume $p$ is an accumulation point of $A$ (observe that $p$ does not necessarily belong to $A$). We can then introduce the oscillation around $p$ of $f$ as \[ {\rm osc}\, (f, p, \varepsilon) := \sup \big\{|f(x)-f(y)|: x,y\in (A\setminus \{p\}) \cap ]p-\varepsilon, p+\varepsilon[\big\}\, . \] The Cauchy criterion states that

Theorem 2 The following limit exists and is finite \begin{equation}\label{e:limit_cont} \lim_{x\in A, x\to p} f(x) \end{equation} if and only if \[ \lim_{\varepsilon\downarrow 0}\; {\rm osc}\, (f, p, \varepsilon) = 0\, . \]

Analogous statements for $\lim_{x\to\pm \infty}$ hold as well. Since the existence of the limit \eqref{e:limit_cont} can be characterized in terms of sequences, Theorem 2 can be easily reduced to Theorem 1. Theorem 2 can be generalized to maps on a general topological space. For this reason, given a set $A$ and a map $f:A \to \mathbb R$ we define the oscillation of $f$ in $A$ as \[ {\rm osc}\, (f, A) := \sup \big\{ |f(x)-f(y)|:x,y\in A \big\}\, . \]

Theorem 3 Let $X$ be a topological space, $A\subset X$, $f: A \to \mathbb R$ and $p$ an accumulation point of $A$. Then the following limit exists and is finite \[ \lim_{x\in A, x\to p} f(x)\, \] if and only if for every $\varepsilon >0$ there is a neighborhood $U$ of $p$ such that \[ {\rm osc}\, (f, (A\cap U)\setminus \{p\}) < \varepsilon\, . \]

Observe that Theorem 1 can be considered as a particular case of Theorem 1. In fact, consider set $X = \mathbb N \cup \{\infty\}$ endowed with the topology \[ \tau = \Big\{\emptyset, X\Big\} \cup \Big\{\big\{i\in \mathbb N: i\geq j\big\}\cup \big\{\infty\big\} : j \in \mathbb N \Big\}\, . \] A sequence $\{a_i\}$ can be considered as a map $a: \mathbb N \to \mathbb R$. Then the existence of the limit of the sequence is equivalent to the existence of the limit at $\infty$ of the map $a$ on the (subset $A$ of the) topological space $X$.

Cauchy criterion for improper integrals

Let $I= [a,b]$ be an interval of the real line and $f:[a,b]\to \mathbb R$ a function which is Riemann (or Lebesgue) integrable on $[a+\varepsilon, b]$ for every $\varepsilon >0$. The improper integral of $f$ on $I$ is defined as \[ \int_a^b f(x)\, dx = \lim_{\varepsilon\downarrow 0} \int_{a+\varepsilon}^b f(x)\, dx\, , \] if the latter limit exists. Similar definitions can be introduced when the function is integrable over intervals of the form $[a, b-\varepsilon]$ or $[a+\delta, b-\varepsilon]$ and when $a=-\infty$ and/or $b=\infty$ (see Improper integral). If we introduce \[ F(\varepsilon) := \int_{a+\varepsilon}^b f(x)\, dx \] the improper integral is simply $\lim_{\varepsilon\downarrow 0} F(\varepsilon)$ and its existence can therefore be characterized using Theorem 2. For a thorough statement (and all its variants) see Improper integral.

Euclidean spaces

All the statements above are valid for sequences and series of vectors in $\mathbb R^n$, for functions taking values in $\mathbb R^n$ and for improper integrals of such functions.

Complete metric spaces and Banach spaces

If $(X,d)$ is a metric space, then a Cauchy sequence on $X$ is a sequence $\{x_i\}\subset X$ such that for any $\varepsilon > 0$ there exists an $N$ such that \[ d(x_n,x_m) < \varepsilon \qquad \forall n,m \geq N\, . \] Similarly, one can define a Cauchy sequence in a normed vector space using the induced metric. Any convergent sequence in any metric space is necessarily a Cauchy sequence. However, in general metric space not all Cauchy sequences necessarily converge. Those metric spaces for which any Cauchy sequence has a limit are called complete and the corresponding versions of Theorem 3 hold. A complete normed vector space is called a Banach space.

Cauchy filters and uniform spaces

A generalization of the concept of Cauchy sequence is that of Cauchy filter in a Uniform space, to which a corresponding notion of completeness is attached.

References

[Ca] A.L. Cauchy, "Analyse algébrique" , Gauthier-Villars (1821) (German translation: Springer, 1885)
[Di] J.A. Dieudonné, "Foundations of modern analysis" , Acad. Press (1961) (Translated from French)
[IP] V.A. Il'in, E.G. Poznyak, "Fundamentals of mathematical analysis" , 1–2 , MIR (1971–1973) (Translated from Russian)
[Ku] L.D. Kudryavtsev, "A course in mathematical analysis" , 1–2 , Moscow (1981) (In Russian)
[Ni] S.M. Nikol'skii, "A course of mathematical analysis" , 1–2 , MIR (1977) (Translated from Russian)
[Ru] W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1976)
[St] O. Stolz, Math. Ann. , 24 (1884) pp. 154–171
[WW] E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952)
How to Cite This Entry:
Cauchy criteria. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cauchy_criteria&oldid=30780
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article