Namespaces
Variants
Actions

Difference between revisions of "De Moivre formula"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (two \varphi bicame \phi as all)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
The formula expressing the rule for raising a [[Complex number|complex number]], expressed in trigonometric form
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d0303001.png" /></td> </tr></table>
 
  
to an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d0303002.png" />-th power. According to de Moivre's formula the modulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d0303003.png" /> of the complex number is raised to that power and the argument <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d0303004.png" /> is multiplied by the exponent:
+
{{TEX|done}}
 +
 
 +
The formula expressing the rule for raising a [[Complex number|complex number]], expressed in trigonometric form
 +
\begin{equation}
 +
z = \rho(\cos\phi + i\sin\phi),
 +
\end{equation}
 +
to an $n$-th power. According to de Moivre's formula the modulus $\rho$ of the complex number is raised to that power and the argument $\varphi$ is multiplied by the exponent:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d0303005.png" /></td> </tr></table>
+
\[ z^n = [\rho(\cos \phi + i \sin \phi)]^n = \rho^n(\cos  n\phi + i \sin n \phi). \]
  
 
The formula was found by A. de Moivre (1707), its modern notation was suggested by L. Euler (1748).
 
The formula was found by A. de Moivre (1707), its modern notation was suggested by L. Euler (1748).
  
De Moivre's formula can be used to express <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d0303006.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d0303007.png" /> in powers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d0303008.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d0303009.png" />:
+
De Moivre's formula can be used to express $ \cos n \phi $ and $ \sin n \phi $ in powers of $ \cos \phi $ and $ \sin \phi $:
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d03030010.png" /></td> </tr></table>
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d03030011.png" /></td> </tr></table>
+
\[ \cos n\phi = \cos^n \phi - \binom{n}{2} \cos^{n-2} \phi \sin^2 \phi + \binom{n}{4}\cos^{n-4}\phi \sin^4\phi - \dots,  \]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d03030012.png" /></td> </tr></table>
+
\[ \sin n\phi = \binom{n}{1}\cos^{n-1}\phi \sin \phi - \binom{n}{3} \cos^{n-3}\phi \sin^3\phi + \dots. \]
  
 
Inversion of de Moivre's formula leads to a formula for extracting roots of a complex number:
 
Inversion of de Moivre's formula leads to a formula for extracting roots of a complex number:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d03030013.png" /></td> </tr></table>
+
\[ [\rho (\cos \phi + i \sin \phi)]^{1/n} = \rho^{1/n}\left( \cos \frac{\phi + 2 \pi k}{n} + i \sin \frac{\phi + 2 \pi k}{n} \right), \quad k = 0, 1, \dots, \]
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030300/d03030014.png" /></td> </tr></table>
 
 
 
 
which is also sometimes called de Moivre's formula.
 
which is also sometimes called de Moivre's formula.
  

Latest revision as of 10:03, 4 June 2013


The formula expressing the rule for raising a complex number, expressed in trigonometric form \begin{equation} z = \rho(\cos\phi + i\sin\phi), \end{equation} to an $n$-th power. According to de Moivre's formula the modulus $\rho$ of the complex number is raised to that power and the argument $\varphi$ is multiplied by the exponent:

\[ z^n = [\rho(\cos \phi + i \sin \phi)]^n = \rho^n(\cos n\phi + i \sin n \phi). \]

The formula was found by A. de Moivre (1707), its modern notation was suggested by L. Euler (1748).

De Moivre's formula can be used to express $ \cos n \phi $ and $ \sin n \phi $ in powers of $ \cos \phi $ and $ \sin \phi $:

\[ \cos n\phi = \cos^n \phi - \binom{n}{2} \cos^{n-2} \phi \sin^2 \phi + \binom{n}{4}\cos^{n-4}\phi \sin^4\phi - \dots, \]

\[ \sin n\phi = \binom{n}{1}\cos^{n-1}\phi \sin \phi - \binom{n}{3} \cos^{n-3}\phi \sin^3\phi + \dots. \]

Inversion of de Moivre's formula leads to a formula for extracting roots of a complex number:

\[ [\rho (\cos \phi + i \sin \phi)]^{1/n} = \rho^{1/n}\left( \cos \frac{\phi + 2 \pi k}{n} + i \sin \frac{\phi + 2 \pi k}{n} \right), \quad k = 0, 1, \dots, \] which is also sometimes called de Moivre's formula.


Comments

References

[a1] A.I. Markushevich, "Theory of functions of a complex variable" , 1 , Chelsea (1977) (Translated from Russian)
How to Cite This Entry:
De Moivre formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=De_Moivre_formula&oldid=14287
This article was adapted from an original article by BSE-3 (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article