Namespaces
Variants
Actions

Difference between pages "Rademacher theorem" and "Cauchy Binet formula"

From Encyclopedia of Mathematics
(Difference between pages)
Jump to: navigation, search
m (Add link: Lipschitz Function)
 
(link)
 
Line 1: Line 1:
{{MSC|26B05|26B35}}
+
[[Category:Linear and multilinear algebra; matrix theory]]
 
+
{{MSC|15Axx|}}
 
{{TEX|done}}
 
{{TEX|done}}
  
[[Category:Analysis]]
 
  
A theorem proved by H. Rademacher about the differentiability of [[Lipschitz Function|Lipschtz functions]] .
+
A formula aimed at expressing the determinant of the product of two matrices $A\in\mathrm{M}_{m,n}(\mathbb{R})$
 +
and $B\in\mathrm{M}_{n,m}(\mathbb{R})$, in terms of the sum of the products of all possible higher order [[Minor|minors]]
 +
of $A$ with corresponding minors of the same order of $B$. More precisely, if $\alpha=(1,\ldots,m)$ and $\beta$
 +
denotes  any [[Multiindex|multi-index]] $(\beta_1,\ldots,\beta_m)$ with $1\leq  \beta_1<\ldots<\beta_m\leq n$ of
 +
length $m$, then
 +
\[
 +
\det(AB)=\sum_\beta\det A_{\alpha\,\beta}\det B_{\beta\,\alpha},
 +
\]
 +
where $A_{\alpha\,\beta}=(a_{\alpha_i\beta_j})$ and $B_{\beta\,\alpha}=(a_{\beta_j\alpha_i})$.
 +
In case $m>n$, no such $\beta$ exists and the right-hand side above is set to be $0$ by definition.
 +
 
 +
Note that if $n=m$ the formula reduces to
 +
\[
 +
\det (AB)=\det A\,\det B.
 +
\]
 +
More generally, if $A\in\mathrm{M}_{m,n}(\mathbb{R})$, $B\in\mathrm{M}_{n,q}(\mathbb{R})$
 +
and $p\leq\min\{m,q\}$, then any minor of order $p$ of the product matrix $AB$ can be expressed
 +
as follows by Cauchy Binet formula
 +
\[
 +
\det((AB)_{\alpha\,\gamma})=\sum_\beta\det A_{\alpha\,\beta}\det B_{\beta\,\gamma},
 +
\]
 +
where $\alpha=(\alpha_1\ldots,\alpha_p)$ with $1\leq\alpha_1<\ldots<\alpha_p\leq m$,
 +
$\gamma=(\gamma_1,\ldots,\gamma_p)$ with $1\leq\gamma_1<\ldots<\gamma_p\leq q$, and
 +
$\beta=(\beta_1,\ldots,\beta_m)$ with $1\leq \beta_1<\ldots<\beta_m\leq n$.
  
'''Theorem'''
+
A number of interesting consequence of Cauchy Binet formula is listed below.
Let $U$ be an open subset of $\mathbb R^n$ and $f:U\to \mathbb R^k$ a Lipschitz function, i.e. such that there is a constant $C$ with
+
First of all, an inequality for the [[Rank|rank]] of the product matrix
 +
follows straightforwardly, i.e.,
 
\[
 
\[
|f(x)-f(y)|\leq C|x-y|\qquad \mbox{for every $x,y\in U$.}
+
\mathrm{rank}(AB)\leq\min\{\mathrm{rank}A,\mathrm{rank}B\}.
 
\]
 
\]
Then $f$ is differentiable almost everywhere (with respect to the Lebesgue measure $\lambda$). That is, there is a set $E\subset U$ with $\lambda (U\setminus E) = 0$ and such that for every $x\in E$ there is a linear function $L_x:\mathbb R^n\to \mathbb R^k$ with
+
Moreover, if $m=2$, $\mathbf{a}$, $\mathbf{b}\in\mathbb{R}^n$ are two vectors,
 +
by taking
 +
$$A=\begin{pmatrix}
 +
a_{1}&\dots&a_{n}\\
 +
b_{1}&\dots&b_{n}\\
 +
\end{pmatrix}
 +
\quad\text{and}\quad
 +
B=\begin{pmatrix}
 +
a_{1}&b_{1}\\
 +
\dots&\dots\\
 +
a_{n}&b_{n}\\
 +
\end{pmatrix}
 +
$$
 +
the Cauchy Binet formula yields
 
\[
 
\[
\lim_{y\to x} \frac{f (x) - f(y) - L_x (y-x)}{|y-x|} \; =\; 0\, .
+
\sum_{1\leq i<j\leq n}\begin{vmatrix}
 +
a_{i}&a_{j}\\
 +
b_{i}&b_{j}\\
 +
\end{vmatrix}^2=
 +
\begin{vmatrix}
 +
\|\mathbf{a}\|^2&\langle\mathbf{a},\mathbf{b}\rangle\\
 +
\langle\mathbf{a}, \mathbf{b}\rangle&\|\mathbf{b}\|^2\\
 +
\end{vmatrix},
 +
\]
 +
in turn implying the [[Cauchy Schwarz inequality]]. Here, $\|\cdot\|$ and
 +
$\langle\cdot,\cdot\rangle$ are the Euclidean norm and scalar product, respectively.
 +
 
 +
Let us finally interpret geometrically the result. Take $B=A^T$, then
 +
$\det(A_{\alpha\beta})=\det(A^T_{\beta,\alpha})$, so that by Cauchy Binet formula
 +
\[\label{p}
 +
\det(A^T\,A)=\sum_\beta(\det(A_{\alpha\beta}))^2.
 
\]
 
\]
 +
This is a generalization of the Pythagorean formula, corresponding to $m=1$. Indeed,
 +
if $\mathcal{B}:\mathbb{R}^m\to\mathbb{R}^n$ is the linear map associated to $A^T$,
 +
and $Q\subset\mathbb{R}^m$ is the unitary cube, the $m$-th dimensional volume of the
 +
parallelepiped $\mathcal{A}(Q)\subset\mathbb{R}^n$ is given by $\sqrt{\det(A^T\,A)}$
 +
due to the [[Polar decomposition|polar decomposition]] of $A$, recall that $m\leq n$.
  
For a proof see Theorem 2.14 of {{Cite|AFP}} or {{Cite|EG}}.
+
Formula (1) above then expresses the square of the $m$-th dimensional volume of  
 +
$\mathcal{A}(Q)$ as the sum of the squares of the volumes of the projections on
 +
all coordinates $m$ planes (cp. with [[Area formula|Area formula]]).
  
The same conclusion holds also for maps in the Sobolev class $W^{1,p}$ if $p$ is strictly larger then the dimension of the domain.
 
  
===Reference===
+
===References===
 
{|
 
{|
 
|-
 
|-
|valign="top"|{{Ref|AFP}}||     L. Ambrosio, N. Fusco, D. Pallara, "Functions of bounded variations   and free discontinuity problems". Oxford Mathematical Monographs. The    Clarendon Press, Oxford University Press, New York, 2000.     {{MR|1857292}}{{ZBL|0957.49001}}  
+
|valign="top"|{{Ref|EG}}||   L.C. Evans, R.F. Gariepy,  "Measure theory  and fine properties of    functions" Studies in Advanced Mathematics. CRC Press, Boca Raton,   FL, 1992. {{MR|1158660}} {{ZBL|0804.2800}}  
 
|-
 
|-
|valign="top"|{{Ref|EG}}|| L.C. Evans, R.F. Gariepy, "Measure theory and fine properties of functions" Studies in Advanced Mathematics. CRC  Press, Boca Raton, FL, 1992. {{MR|1158660}} {{ZBL|0804.2800}}  
+
|valign="top"|{{Ref|Fe}}||  
 +
F.R. Gantmacher, "The theory of matrices. Vol. 1", AMS Chelsea Publishing, Providence, RI, (1998).
 +
{{MR|1657129}}
 
|-
 
|-
 
|}
 
|}

Latest revision as of 16:20, 24 November 2012

2020 Mathematics Subject Classification: Primary: 15Axx [MSN][ZBL]


A formula aimed at expressing the determinant of the product of two matrices $A\in\mathrm{M}_{m,n}(\mathbb{R})$ and $B\in\mathrm{M}_{n,m}(\mathbb{R})$, in terms of the sum of the products of all possible higher order minors of $A$ with corresponding minors of the same order of $B$. More precisely, if $\alpha=(1,\ldots,m)$ and $\beta$ denotes any multi-index $(\beta_1,\ldots,\beta_m)$ with $1\leq \beta_1<\ldots<\beta_m\leq n$ of length $m$, then \[ \det(AB)=\sum_\beta\det A_{\alpha\,\beta}\det B_{\beta\,\alpha}, \] where $A_{\alpha\,\beta}=(a_{\alpha_i\beta_j})$ and $B_{\beta\,\alpha}=(a_{\beta_j\alpha_i})$. In case $m>n$, no such $\beta$ exists and the right-hand side above is set to be $0$ by definition.

Note that if $n=m$ the formula reduces to \[ \det (AB)=\det A\,\det B. \] More generally, if $A\in\mathrm{M}_{m,n}(\mathbb{R})$, $B\in\mathrm{M}_{n,q}(\mathbb{R})$ and $p\leq\min\{m,q\}$, then any minor of order $p$ of the product matrix $AB$ can be expressed as follows by Cauchy Binet formula \[ \det((AB)_{\alpha\,\gamma})=\sum_\beta\det A_{\alpha\,\beta}\det B_{\beta\,\gamma}, \] where $\alpha=(\alpha_1\ldots,\alpha_p)$ with $1\leq\alpha_1<\ldots<\alpha_p\leq m$, $\gamma=(\gamma_1,\ldots,\gamma_p)$ with $1\leq\gamma_1<\ldots<\gamma_p\leq q$, and $\beta=(\beta_1,\ldots,\beta_m)$ with $1\leq \beta_1<\ldots<\beta_m\leq n$.

A number of interesting consequence of Cauchy Binet formula is listed below. First of all, an inequality for the rank of the product matrix follows straightforwardly, i.e., \[ \mathrm{rank}(AB)\leq\min\{\mathrm{rank}A,\mathrm{rank}B\}. \] Moreover, if $m=2$, $\mathbf{a}$, $\mathbf{b}\in\mathbb{R}^n$ are two vectors, by taking $$A=\begin{pmatrix} a_{1}&\dots&a_{n}\\ b_{1}&\dots&b_{n}\\ \end{pmatrix} \quad\text{and}\quad B=\begin{pmatrix} a_{1}&b_{1}\\ \dots&\dots\\ a_{n}&b_{n}\\ \end{pmatrix} $$ the Cauchy Binet formula yields \[ \sum_{1\leq i<j\leq n}\begin{vmatrix} a_{i}&a_{j}\\ b_{i}&b_{j}\\ \end{vmatrix}^2= \begin{vmatrix} \|\mathbf{a}\|^2&\langle\mathbf{a},\mathbf{b}\rangle\\ \langle\mathbf{a}, \mathbf{b}\rangle&\|\mathbf{b}\|^2\\ \end{vmatrix}, \] in turn implying the Cauchy Schwarz inequality. Here, $\|\cdot\|$ and $\langle\cdot,\cdot\rangle$ are the Euclidean norm and scalar product, respectively.

Let us finally interpret geometrically the result. Take $B=A^T$, then $\det(A_{\alpha\beta})=\det(A^T_{\beta,\alpha})$, so that by Cauchy Binet formula \[\label{p} \det(A^T\,A)=\sum_\beta(\det(A_{\alpha\beta}))^2. \] This is a generalization of the Pythagorean formula, corresponding to $m=1$. Indeed, if $\mathcal{B}:\mathbb{R}^m\to\mathbb{R}^n$ is the linear map associated to $A^T$, and $Q\subset\mathbb{R}^m$ is the unitary cube, the $m$-th dimensional volume of the parallelepiped $\mathcal{A}(Q)\subset\mathbb{R}^n$ is given by $\sqrt{\det(A^T\,A)}$ due to the polar decomposition of $A$, recall that $m\leq n$.

Formula (1) above then expresses the square of the $m$-th dimensional volume of $\mathcal{A}(Q)$ as the sum of the squares of the volumes of the projections on all coordinates $m$ planes (cp. with Area formula).


References

[EG] L.C. Evans, R.F. Gariepy, "Measure theory and fine properties of functions" Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. MR1158660 Zbl 0804.2800
[Fe]

F.R. Gantmacher, "The theory of matrices. Vol. 1", AMS Chelsea Publishing, Providence, RI, (1998). MR1657129

How to Cite This Entry:
Rademacher theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rademacher_theorem&oldid=28858