Difference between revisions of "Lipschitz constant"
From Encyclopedia of Mathematics
(Importing text file) |
m (TeX encoding is done) |
||
Line 1: | Line 1: | ||
− | ''for a function | + | ''for a function $f$ defined on an interval $[a,b]$'' |
− | The greatest lower bound of constants | + | The greatest lower bound of constants $M>0$ in the [[Lipschitz condition|Lipschitz condition]] of order $\alpha$, $0<\alpha\leq1$, |
− | + | \begin{equation*} | |
+ | |f(y)-f(x)|\leq M|y-x|^{\alpha}, \quad x,y\in[a,b] | ||
+ | \end{equation*} | ||
+ | |||
+ | If $\alpha=1$ $f$ is called [[Lipschitz Function | Lipschitz function]]. |
Revision as of 16:09, 23 November 2012
for a function $f$ defined on an interval $[a,b]$
The greatest lower bound of constants $M>0$ in the Lipschitz condition of order $\alpha$, $0<\alpha\leq1$,
\begin{equation*} |f(y)-f(x)|\leq M|y-x|^{\alpha}, \quad x,y\in[a,b] \end{equation*}
If $\alpha=1$ $f$ is called Lipschitz function.
How to Cite This Entry:
Lipschitz constant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lipschitz_constant&oldid=13226
Lipschitz constant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lipschitz_constant&oldid=13226
This article was adapted from an original article by A.V. Efimov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article