Difference between revisions of "Absolute value"
From Encyclopedia of Mathematics
(Importing text file) |
(TeX encoding is done) |
||
Line 1: | Line 1: | ||
− | |||
− | |||
− | |||
− | + | ''modulus, of a real number $a$'' | |
− | + | The non-negative number, denoted by $a$, which is defined as follows: If $a\geq0$, $|a|=a$; if $a<0$, $|a|=-a$. The absolute value (modulus) of a complex number $z=x+iy$, where $x$ and $y$ are real numbers, is the number $+\sqrt{x^2+y^2}$. | |
− | + | === Properties=== | |
+ | Absolute values obey the following relations | ||
+ | * $|a| = |-a|$, | ||
+ | * $|a|-|b|\leq |a+b| \leq |a| + |b|$, | ||
+ | * $|a|-|b|\leq |a-b| \leq |a| + |b|$, | ||
+ | * $|a\cdot b|=|a|\cdot |b|$, | ||
+ | * if $b\ne0$ then $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$, | ||
+ | * $|a|^2 = |a^2| = a^2$ (only for real numbers). | ||
+ | |||
+ | === Generalization=== | ||
A generalization of the concept of the absolute value to the case of arbitrary fields exists, cf. [[Norm on a field|Norm on a field]]. | A generalization of the concept of the absolute value to the case of arbitrary fields exists, cf. [[Norm on a field|Norm on a field]]. |
Revision as of 14:25, 23 November 2012
modulus, of a real number $a$
The non-negative number, denoted by $a$, which is defined as follows: If $a\geq0$, $|a|=a$; if $a<0$, $|a|=-a$. The absolute value (modulus) of a complex number $z=x+iy$, where $x$ and $y$ are real numbers, is the number $+\sqrt{x^2+y^2}$.
Properties
Absolute values obey the following relations
- $|a| = |-a|$,
- $|a|-|b|\leq |a+b| \leq |a| + |b|$,
- $|a|-|b|\leq |a-b| \leq |a| + |b|$,
- $|a\cdot b|=|a|\cdot |b|$,
- if $b\ne0$ then $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$,
- $|a|^2 = |a^2| = a^2$ (only for real numbers).
Generalization
A generalization of the concept of the absolute value to the case of arbitrary fields exists, cf. Norm on a field.
How to Cite This Entry:
Absolute value. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Absolute_value&oldid=17245
Absolute value. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Absolute_value&oldid=17245