Namespaces
Variants
Actions

Difference between revisions of "Pierpont variation"

From Encyclopedia of Mathematics
Jump to: navigation, search
m
m (some MR/ZBL added)
 
Line 27: Line 27:
 
{|
 
{|
 
|-
 
|-
|valign="top"|{{Ref|Ha}}|| H. Hahn,  "Theorie der reellen Funktionen" , '''1''' , Springer  (1921).
+
|valign="top"|{{Ref|Ha}}|| H. Hahn,  "Theorie der reellen Funktionen" , '''1''' , Springer  (1921).   JFM {{ZBL|48.0261.09}}
 
|-
 
|-
|valign="top"|{{Ref|Pi}}|| J. Pierpont,  "Lectures on the theory of functions of real variables" , '''1''' , Dover (1959).
+
|valign="top"|{{Ref|Pi}}|| J. Pierpont,  "Lectures on the theory of functions of real variables" , '''1''' , Dover (1959). {{MR|0105467}}  JFM {{ZBL|36.0346.01}}
 
|-
 
|-
 
|}
 
|}

Latest revision as of 12:31, 27 September 2012

2020 Mathematics Subject Classification: Primary: 26B30 Secondary: 26A45 [MSN][ZBL]

A generalization to functions of several variables of the Variation of a function of one variable, proposed by Pierpont in [Pi]. However the modern theory of functions of bounded variation uses a different generalization (see Function of bounded variation and Variation of a function). Therefore the Pierpont variation is seldomly used nowadays.

Consider a rectangle $R:= [a_1, b_1]\times \ldots \times [a_n, b_n]\subset \mathbb R^n$ and let $\Pi_k^m$ be the set of points $a_k = a_k^0 < \ldots < a_k^{m+1}$ which subdivides $[a_k, b_k]$ in $m$ segments of equal length. These subdivisions generate a subdivision $\Sigma^m$ of the rectangle $R$ into $2^m$ closed rectangles $R^m_1, \ldots, R^m_{2^m}$ having equal side lengths.

Definition The Pierpont variation of a function $f:R\to \mathbb R$ is defined as \[ \sup_m\; \frac{1}{m^{n-1}} \sum_{i=1}^{2^m} \omega \left(f, R^m_i\right) \] where $\omega (f, E)$ denotes the oscillation of the function $f$ over the set $E$, namely \[ \omega (f, E) := \sup_E\; f - \inf_E\; f\, . \] If the Pierpont variation of $f$ is finite then one says that $f$ has bounded (finite) Pierpont variation.

If a function $f$ has bounded Arzela variation then it has also bounded Pierpont variation.


References

[Ha] H. Hahn, "Theorie der reellen Funktionen" , 1 , Springer (1921). JFM Zbl 48.0261.09
[Pi] J. Pierpont, "Lectures on the theory of functions of real variables" , 1 , Dover (1959). MR0105467 JFM Zbl 36.0346.01
How to Cite This Entry:
Pierpont variation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pierpont_variation&oldid=27979
This article was adapted from an original article by B.I. Golubov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article