Namespaces
Variants
Actions

Difference between revisions of "Lie algebra, nil"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (typo)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
A [[Lie algebra|Lie algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l0584601.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l0584602.png" /> defined by the presence of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l0584603.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l0584604.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l0584605.png" />, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l0584606.png" />. The main question about nil Lie algebras concerns the conditions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l0584607.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l0584608.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l0584609.png" /> under which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846010.png" /> is (locally) nilpotent (see [[Lie algebra, nilpotent|Lie algebra, nilpotent]]). A nil Lie algebra that is finite-dimensional over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846011.png" /> is nilpotent. On the other hand, over any field there are finitely-generated nil Lie algebras that are not nilpotent [[#References|[1]]]. Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846012.png" /> is a constant. A nil Lie algebra is locally nilpotent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846013.png" /> or if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846014.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846015.png" /> (Kostrikin's theorem, [[#References|[2]]]). Local nilpotency also holds in the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846016.png" /> is locally solvable. An infinitely-generated nil Lie algebra is not necessarily nilpotent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846017.png" /> (see [[#References|[3]]]), and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846018.png" /> non-nilpotency can still occur under the condition of solvability. Recently it has been proved by E.I. Zel'myanov that a nil Lie algebra is nilpotent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846019.png" /> (cf. [[#References|[6]]]) and that a nil algebra is also locally nilpotent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846020.png" />. The study of nil Lie algebras over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846021.png" /> of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058460/l05846022.png" /> is closely connected with the [[Burnside problem|Burnside problem]].
+
{{MSC|17B30}}
 +
{{TEX|done}}
  
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.S. Golod,  "On nil-algebras and residually finite groups"  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''28''' :  2  (1964)  pp. 273–276  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.I. Kostrikin,  "On Burnside's problem"  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''23''' :  1  (1959)  pp. 3–34  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  Yu.P. Razmyslov,  "On Lie algebras satisfying the Engel condition"  ''Algebra and Logic'' , '''10''' :  1  (1971)  pp. 21–29  ''Algebra i Logika'' , '''10''' :  1  (1971)  pp. 33–44</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  Yu. [Yu.A. Bakhturin] Bahturin,  "Lectures on Lie algebras" , Akademie Verlag  (1978)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A. Braun,  "Lie rings and the Engel condition"  ''J. of Algebra'' , '''31'''  (1974)  pp. 287–292</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  A.I. Kostrikin,  "Around Burnside" , Springer  (1989)  (Translated from Russian)</TD></TR></table>
 
 
 
 
====Comments====
 
  
 +
A
 +
[[Lie algebra|Lie algebra]] ${\mathfrak g}$ over a field $k$ is called ''nil'' if there is a function $n:{\mathfrak g}\times{\mathfrak g}\to{\mathbb N}$ such that $({\rm ad}\; x)^{n(x,y)}(y) = 0$, where $({\rm ad}\; x)(y) = [x,y]$, for any $x,y\in{\mathfrak g}$. The
 +
main question about nil Lie algebras concerns the conditions on ${\mathfrak g}$,
 +
$k$, $n$ under which ${\mathfrak g}$ is (locally) nilpotent (see
 +
[[Lie algebra, nilpotent|Lie algebra, nilpotent]]). A nil Lie algebra
 +
that is finite-dimensional over $k$ is nilpotent. On the other hand,
 +
over any field there are finitely-generated nil Lie algebras that are
 +
not nilpotent
 +
{{Cite|Go}}. Suppose that $n$ is a constant. A nil Lie algebra
 +
is locally nilpotent if ${\rm char}\; k = 0$ or if $m\le p+1$, where $p={\rm char}\; k>0$ (Kostrikin's theorem,
 +
{{Cite|Ko}}). Local nilpotency also holds in the case when ${\mathfrak g}$
 +
is locally solvable. An infinitely-generated nil Lie algebra is not
 +
necessarily nilpotent if $n\ge p-2$ (see
 +
{{Cite|Ra}}), and for $n\ge p+1$ non-nilpotency can still occur under
 +
the condition of solvability. Recently it has been proved by
 +
E.I. Zel'myanov that a nil Lie algebra is nilpotent if ${\rm char}\; k = 0$ (cf.
 +
{{Cite|Ko2}}) and that a nil algebra is also locally nilpotent
 +
if $n> p+1$. The study of nil Lie algebras over a field $k$ of
 +
characteristic $p>0$ is closely connected with the
 +
[[Burnside problem|Burnside problem]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Jacobson,   "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.E. Humphreys,  "Introduction to Lie algebras and representation theory" , Springer  (1972) pp. §5.4</TD></TR></table>
+
{|
 +
|-
 +
|valign="top"|{{Ref|Br}}||valign="top"| A. Braun, "Lie rings and the Engel condition" ''J. of Algebra'', '''31''' (1974) pp. 287–292  {{MR|0344299}} {{ZBL|0358.20051}}
 +
|-
 +
|valign="top"|{{Ref|Go}}||valign="top"| E.S. Golod, "On nil-algebras and residually finite groups" ''Izv. Akad. Nauk SSSR Ser. Mat.'', '''28''' : 2 (1964) pp. 273–276 (In Russian) 
 +
|-
 +
|valign="top"|{{Ref|Hu}}||valign="top"| J.E. Humphreys, "Introduction to Lie algebras and representation theory", Springer (1972) pp. §5.4  {{MR|0323842}}  {{ZBL|0254.17004}}
 +
|-
 +
|valign="top"|{{Ref|Ja}}||valign="top"| N. Jacobson, "Lie algebras", Interscience (1962) ((also: Dover, reprint, 1979)) {{MR|0148716}} {{MR|0143793}}  {{ZBL|0121.27504}} {{ZBL|0109.26201}}
 +
|-
 +
|valign="top"|{{Ref|Ko}}||valign="top"| A.I. Kostrikin, "On Burnside's problem" ''Izv. Akad. Nauk SSSR Ser. Mat.'', '''23''' : 1 (1959) pp. 3–34 (In Russian) 
 +
|-
 +
|valign="top"|{{Ref|Ko2}}||valign="top"| A.I. Kostrikin, "Around Burnside", Springer (1989) (Translated from Russian)    
 +
|-
 +
|valign="top"|{{Ref|Ra}}||valign="top"| Yu.P. Razmyslov, "On Lie algebras satisfying the Engel condition" ''Algebra and Logic'', '''10''' : 1 (1971) pp. 21–29 ''Algebra i Logika'', '''10''' : 1 (1971) pp. 33–44  {{ZBL|0253.17005}}
 +
|-
 +
|}

Latest revision as of 22:04, 5 March 2012

2020 Mathematics Subject Classification: Primary: 17B30 [MSN][ZBL]


A Lie algebra ${\mathfrak g}$ over a field $k$ is called nil if there is a function $n:{\mathfrak g}\times{\mathfrak g}\to{\mathbb N}$ such that $({\rm ad}\; x)^{n(x,y)}(y) = 0$, where $({\rm ad}\; x)(y) = [x,y]$, for any $x,y\in{\mathfrak g}$. The main question about nil Lie algebras concerns the conditions on ${\mathfrak g}$, $k$, $n$ under which ${\mathfrak g}$ is (locally) nilpotent (see Lie algebra, nilpotent). A nil Lie algebra that is finite-dimensional over $k$ is nilpotent. On the other hand, over any field there are finitely-generated nil Lie algebras that are not nilpotent [Go]. Suppose that $n$ is a constant. A nil Lie algebra is locally nilpotent if ${\rm char}\; k = 0$ or if $m\le p+1$, where $p={\rm char}\; k>0$ (Kostrikin's theorem, [Ko]). Local nilpotency also holds in the case when ${\mathfrak g}$ is locally solvable. An infinitely-generated nil Lie algebra is not necessarily nilpotent if $n\ge p-2$ (see [Ra]), and for $n\ge p+1$ non-nilpotency can still occur under the condition of solvability. Recently it has been proved by E.I. Zel'myanov that a nil Lie algebra is nilpotent if ${\rm char}\; k = 0$ (cf. [Ko2]) and that a nil algebra is also locally nilpotent if $n> p+1$. The study of nil Lie algebras over a field $k$ of characteristic $p>0$ is closely connected with the Burnside problem.

References

[Br] A. Braun, "Lie rings and the Engel condition" J. of Algebra, 31 (1974) pp. 287–292 MR0344299 Zbl 0358.20051
[Go] E.S. Golod, "On nil-algebras and residually finite groups" Izv. Akad. Nauk SSSR Ser. Mat., 28 : 2 (1964) pp. 273–276 (In Russian)
[Hu] J.E. Humphreys, "Introduction to Lie algebras and representation theory", Springer (1972) pp. §5.4 MR0323842 Zbl 0254.17004
[Ja] N. Jacobson, "Lie algebras", Interscience (1962) ((also: Dover, reprint, 1979)) MR0148716 MR0143793 Zbl 0121.27504 Zbl 0109.26201
[Ko] A.I. Kostrikin, "On Burnside's problem" Izv. Akad. Nauk SSSR Ser. Mat., 23 : 1 (1959) pp. 3–34 (In Russian)
[Ko2] A.I. Kostrikin, "Around Burnside", Springer (1989) (Translated from Russian)
[Ra] Yu.P. Razmyslov, "On Lie algebras satisfying the Engel condition" Algebra and Logic, 10 : 1 (1971) pp. 21–29 Algebra i Logika, 10 : 1 (1971) pp. 33–44 Zbl 0253.17005
How to Cite This Entry:
Lie algebra, nil. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lie_algebra,_nil&oldid=13081
This article was adapted from an original article by Yu.A. Bakhturin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article