Namespaces
Variants
Actions

Difference between revisions of "Convergence in probability"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(MSC|60-01|28A20)
Line 1: Line 1:
 +
{{MSC|60-01|28A20}}
 +
 
Convergence of a sequence of random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026080/c0260801.png" /> defined on a probability space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026080/c0260802.png" />, to a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026080/c0260803.png" />, defined in the following way: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026080/c0260804.png" /> if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026080/c0260805.png" />,
 
Convergence of a sequence of random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026080/c0260801.png" /> defined on a probability space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026080/c0260802.png" />, to a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026080/c0260803.png" />, defined in the following way: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026080/c0260804.png" /> if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026080/c0260805.png" />,
  

Revision as of 15:11, 7 February 2012

2020 Mathematics Subject Classification: Primary: 60-01 Secondary: 28A20 [MSN][ZBL]

Convergence of a sequence of random variables defined on a probability space , to a random variable , defined in the following way: if for any ,

In mathematical analysis, this form of convergence is called convergence in measure. Convergence in distribution follows from convergence in probability.


Comments

See also Weak convergence of probability measures; Convergence, types of; Distributions, convergence of.

How to Cite This Entry:
Convergence in probability. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Convergence_in_probability&oldid=15590
This article was adapted from an original article by V.I. Bityutskov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article