Difference between revisions of "Standard Borel space"
(making sections) |
(Category:Descriptive set theory) |
||
Line 1: | Line 1: | ||
''Also: standard measurable space'' | ''Also: standard measurable space'' | ||
+ | [[Category:Descriptive set theory]] | ||
[[Category:Classical measure theory]] | [[Category:Classical measure theory]] | ||
− | {{User:Rehmann/sandbox/MSC|28A05 | + | {{User:Rehmann/sandbox/MSC|03E15|28A05,54H05}} |
$ \newcommand{\R}{\mathbb R} | $ \newcommand{\R}{\mathbb R} |
Revision as of 19:33, 26 January 2012
Also: standard measurable space
[ 2010 Mathematics Subject Classification MSN: 03E15,(28A05,54H05) | MSCwiki: 03E15 + 28A05,54H05 ]
$ \newcommand{\R}{\mathbb R} \newcommand{\C}{\mathbb C} \newcommand{\Om}{\Omega} \newcommand{\A}{\mathcal A} \newcommand{\B}{\mathcal B} \newcommand{\P}{\mathbf P} $ A Borel space $(X,\A)$ is called standard if it satisfies the following equivalent conditions:
- $(X,\A)$ is isomorphic to some compact metric space with the Borel σ-algebra;
- $(X,\A)$ is isomorphic to some separable complete metric space with the Borel σ-algebra;
- $(X,\A)$ is isomorphic to some Borel subset of some separable complete metric space with the Borel σ-algebra.
The isomorphism theorem
Finite and countable standard Borel spaces are trivial: all subsets are measurable. Two such spaces are isomorphic if and only if they have the same cardinality, which is trivial. But the following result ("the isomorphism theorem", see [1, Sect. 15.B]) is surprising and highly nontrivial.
Theorem 1. All uncountable standard Borel spaces are mutually isomorphic.
That is, up to isomorphism we have "the" uncountable standard Borel space. Its "incarnations" include $\R^n$ (for every $n\ge1$), separable Hilbert spaces, the Cantor set, the set of all irrational numbers etc. (these are separable complete metric spaces or Borel sets in such spaces), endowed with their Borel σ-algebras. That is instructive: topological notions such as dimension, connectedness, compactness etc. do not apply to Borel spaces.
Measurable injections
Here is another important fact (see [3, Th. 3.2] or [1, Sect. 15.A]) in two equivalent forms.
Theorem 2a. If a bijective map between standard Borel spaces is measurable then the inverse map is also measurable.
Theorem 2b. If σ-algebras $\A$, $\B$ on $X$ are such that $\A\subset\B$ and $(X,\A)$, $(X,\B)$ are standard then $\A=\B$.
Example. The real line with the Lebesgue σ-algebra is not standard (by Theorem 2b).
Recall a topological fact similar to Theorem 2: if a bijective map between compact Hausdorff topological spaces is continuous then the inverse map is also continuous. Moreover, if a Hausdorff topology is weaker than a compact topology then these two topologies are equal, which has the following Borel-space counterpart stronger than Theorem 2 (in three equivalent forms).
Theorem 3a. If a bijective map from a standard Borel space to a countably separated measurable space is measurable then the inverse map is also measurable.
Theorem 3b. If σ-algebras $\A$, $\B$ on $X$ are such that $\A\subset\B$, $(X,\A)$ is countably separated and $(X,\B)$ is standard then $\A=\B$.
Theorem 3c. If $(X,\A)$ is a standard Borel space then $\A$ is generated by every at most countable separating subset of $\A$. (See [3, Sect. 3].
If a subset of a Hausdorff topological space is itself a compact topological space then it is a compact subset, which also has a Borel-space counterpart.
Theorem 4. If a subset of a countably separated measurable space is itself a standard Borel space then it is a measurable subset.
The analogy breaks down for maps that are not one-to-one. A continuous image of a compact topological space is always a compact set, in contrast to the following.
Fact. If $(X,\A)$ and $(Y,\B)$ are standard Borel spaces and $f:X\to Y$ is a measurable map then $f(X)$ is not necessarily measurable.
That is, the set $f(X)$ need not belong to $\B$. It is a so-called analytic set, and it is universally measurable.
For one-to-one maps a positive result is available (follows easily from Theorems 3b and 4).
Theorem 5. If $(X,\B)$ is a standard Borel space, $(Y,\A)$ a countably separated measurable space, and $f:X\to Y$ a measurable one-to-one map then $f(X)$ is measurable.
Blackwell-Mackey theorem
On the other hand, Theorem 3 has a counterpart for many-to-one maps. (See [4, Sect. 4.5].) First, note that an arbitrary map $f:X\to Y$ is a composition of the projection $p:X\to X/f$ and a one-to-one map $g:X/f\to Y$; here $X/f=\{f^{-1}(y):y\in f(X)\}$ (the quotient set) and $p(x)=f^{-1}(f(x))$ (the equivalence class of $x$). If in addition $X,Y$ are measurable spaces and $f$ a measurable map then $p$ and $g$ are measurable. (Here $X/f$ is treated as a quotient measurable space.)
Theorem 6. Let $(X,\B)$ be a standard Borel space, $(Y,\A)$ a countably separated measurable space, $f:X\to Y$ a measurable map, $f(X)=Y$, and $p:X\to X/f$, $g:X/f\to Y$ as above. Then $g^{-1}$ is measurable.
Reformulating it in terms of the quotient space one generalizes Theorem 3 as follows.
Theorem 7a. If a bijective map from a quotient space of a standard Borel space to a countably separated measurable space is measurable then the inverse map is also measurable.
Theorem 7b. If σ-algebras $\A$, $\B$ on $X$ are such that $\A\subset\B$, $(X,\A)$ is countably separated and $(X,\B)$ is a quotient space of a standard Borel space then $\A=\B$.
Theorem 7c. If $(X,\A)$ is a quotient space of a standard Borel space then $\A$ is generated by every at most countable separating subset of $\A$. (Of course, the conclusion is void unless $(X,\A)$ is countably separated.)
A countably separated quotient space of a standard Borel space is called analytic Borel space.
Measurable graphs
The graph $\{(x,f(x)):x\in X\}$ of a map $f:X\to Y$ is a subset of $X\times Y$. Generally, measurability of the graph is necessary (under mild conditions) but not sufficient for measurability of the map. But for standard spaces it is also sufficient. (See [1, Sect. 14.C]. The sufficiency follows easily from Theorem 5. Also, Theorem 3a follows easily from Theorem 6 below.)
Theorem 8. If $(X,\A)$ and $(Y,\B)$ are standard Borel spaces and $f:X\to Y$ then measurability of $f$ is equivalent to measurability of the graph of $f$.
References
[1] | Alexander S. Kechris, "Classical descriptive set theory", Springer-Verlag (1995). MR1321597 Zbl 0819.04002 |
[2] | Richard M. Dudley, "Real analysis and probability", Wadsworth&Brooks/Cole (1989). MR0982264 Zbl 0686.60001 |
[3] | George W. Mackey, "Borel structure in groups and their duals", Trans. Amer. Math. Soc. 85 (1957), 134–165. MR0089999 Zbl 0082.11201 |
[4] | S.M. Srivastava, "A course on Borel sets", Springer-Verlag (1998). MR1619545 Zbl 0903.28001 |
Standard Borel space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Standard_Borel_space&oldid=20530