User:Maximilian Janisch/latexlist/latex/NoNroff/8
List
1. ; $f _ { k } : = | \cal{F} _ { k } |$ ; confidence 0.998
2. ; $y ^ { \prime \prime } + b y ^ { \prime } + c y = 0$ ; confidence 0.998
3. ; $n = m + 1$ ; confidence 0.998
4. ; $\Phi _ { 1 } = \Phi _ { 2 }$ ; confidence 0.998
5. ; $M ( n ) ( \geq 0 )$ ; confidence 0.998
6. ; $( Z f ) ( t , w + 1 ) = ( Z f ) ( t , w ).$ ; confidence 0.998
7. ; $( X , D )$ ; confidence 0.998
8. ; ${\cal{F}} ( {\bf R} )$ ; confidence 1.000
9. ; $\pi : T ( H ( Y ) ) \rightarrow H ( Y )$ ; confidence 0.998
10. ; $D ( H )$ ; confidence 0.998
11. ; $\alpha , \beta \in \cal{K}$ ; confidence 1.000
12. ; $A ( 0 , n ) = n + 1,$ ; confidence 0.998
13. ; $[ P + A , P + A ] ^ { \wedge } = 2 [ P , A ] ^ { \wedge } + [ A , A ] ^ { \wedge } = 0$ ; confidence 0.998
14. ; $\tau > 0$ ; confidence 0.998
15. ; $r ( q ) = r ( p ) + 1$ ; confidence 0.998
16. ; $\Theta( \mu ) \rightarrow F ( \mu ),$ ; confidence 1.000
17. ; $f ^ { 2 } \simeq f$ ; confidence 0.998
18. ; $e ^ { 2 } = 0$ ; confidence 0.998
19. ; $h ( T ) = g ( f ( T ) )$ ; confidence 0.998
20. ; $\{ A ; \preceq \}$ ; confidence 0.998
21. ; $\mathcal{F} ( S )$ ; confidence 0.998
22. ; $p ( M ; \lambda )$ ; confidence 0.998
23. ; $\varphi \in B ( G )$ ; confidence 0.998
24. ; $f : M \rightarrow N$ ; confidence 0.998
25. ; $q ( T ) \neq 0$ ; confidence 0.998
26. ; $A , B \in \cal{F}$ ; confidence 1.000
27. ; $n < 12$ ; confidence 0.998
28. ; $\Gamma ^ { \prime } = \Gamma$ ; confidence 0.998
29. ; $\lambda \in \bf{T}$ ; confidence 1.000
30. ; $\operatorname { deg } f = 1$ ; confidence 0.998
31. ; $L ( H ^ { 1 } ( \Omega ) , L ^ { 2 } ( \Omega ) )$ ; confidence 0.998
32. ; $\lambda ^ { \prime }$ ; confidence 0.998
33. ; $1 \leq t \leq n - k$ ; confidence 0.998
34. ; $0 \leq \theta < 1$ ; confidence 0.998
35. ; $\alpha_y$ ; confidence 1.000
36. ; $A ( \alpha ^ { \prime } , \alpha , k ) = A ( - \alpha , - \alpha ^ { \prime } , k )$ ; confidence 0.998
37. ; $Z ^ { k } = p ( Z , \overline{Z} )$ ; confidence 0.998
38. ; $\varepsilon = 0$ ; confidence 0.998
39. ; $A , B \subset X$ ; confidence 0.998
40. ; $\varphi : X \rightarrow Y$ ; confidence 0.998
41. ; $\rho ^ { \prime } ( y ) = \rho ( y )$ ; confidence 0.998
42. ; $K = 2 ^ { k - 1 }$ ; confidence 0.998
43. ; $\left( \begin{array} { l l } { 3 } & { 2 } \\ { 2 } & { 3 } \end{array} \right)$ ; confidence 0.998
44. ; $F ( x )$ ; confidence 0.998
45. ; $\varphi ( \xi )$ ; confidence 0.998
46. ; $g \geq 0$ ; confidence 0.998
47. ; $E \in B ( X ) = B ( X , X )$ ; confidence 0.998
48. ; $S ( 0 ) = 1$ ; confidence 0.998
49. ; $\zeta \in \Gamma$ ; confidence 0.998
50. ; $( h , h , 3 ) ^ { 2 }$ ; confidence 0.998
51. ; $f \in F ( L )$ ; confidence 0.998
52. ; $f ^ { - 1 } ( Y _ { 0 } ) = X _ { 0 }$ ; confidence 0.998
53. ; $\sigma ( \xi , x )$ ; confidence 0.998
54. ; $r \geq ( \sqrt { 7 } - 1 ) n \approx 1.647 n$ ; confidence 0.998
55. ; $f \in A ( D )$ ; confidence 0.998
56. ; $\lambda \neq 0,1$ ; confidence 0.998
57. ; $X ^ { \prime \prime } ( t ) + {\cal {R}} ( t ) \circ X ( t ) = 0$ ; confidence 1.000
58. ; $1 \leq i \leq m$ ; confidence 0.998
59. ; $\chi ( L ; \lambda )$ ; confidence 0.998
60. ; $( A , A ^ { * } )$ ; confidence 0.998
61. ; $h ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$ ; confidence 0.998
62. ; $r < 3 n / 2$ ; confidence 0.998
63. ; $I ( f )$ ; confidence 0.998
64. ; $G ( \partial A )$ ; confidence 0.998
65. ; $( Z ( t ) , t \in [ 0 , T ] )$ ; confidence 0.998
66. ; $\phi ( x ) = \lambda f ( x )$ ; confidence 0.998
67. ; $H _ { 1 } = H$ ; confidence 0.998
68. ; $\overline { \alpha } : M ( A ) \rightarrow M ( B )$ ; confidence 0.998
69. ; $p ( Z , \overline{Z} ) = 0$ ; confidence 0.998
70. ; $\text{supp}\, \phi \subset U$ ; confidence 1.000
71. ; $J ( p )$ ; confidence 0.998
72. ; $\sigma ( d ) / d < \alpha$ ; confidence 0.998
73. ; $( T _ { n } )$ ; confidence 0.998
74. ; $f = \operatorname { max } f ( x )$ ; confidence 0.998
75. ; $B _ { r } = g / r ^ { 2 }$ ; confidence 0.998
76. ; $U ( T )$ ; confidence 0.998
77. ; $[ ( n + 2 ) / 2 ]$ ; confidence 0.998
78. ; $f : U \rightarrow f [ U ]$ ; confidence 0.998
79. ; $p \in P ( k )$ ; confidence 0.998
80. ; $[ A ]$ ; confidence 0.998
81. ; $\frac { 1 } { \lambda } = \operatorname { sup } \frac { | D ( h ) - D ^ { * } ( h ) | } { D ( h ) + D ^ { * } ( h ) },$ ; confidence 0.998
82. ; $\gamma _ { n } = 1 / n$ ; confidence 0.998
83. ; $T \in A ^ { + }$ ; confidence 0.998
84. ; $g ^ { \prime }$ ; confidence 0.998
85. ; $( X , d )$ ; confidence 0.998
86. ; $H _ { 1 } ( B ) = 0$ ; confidence 0.998
87. ; $E \subset [ 0,1 ]$ ; confidence 0.998
88. ; $w ( \widetilde{Z} ( K ) )$ ; confidence 1.000
89. ; $( x , t ) \in \partial \Omega \times [ 0 , T ]$ ; confidence 0.998
90. ; $H _ { 0 } ( M , G ) \cong G$ ; confidence 0.998
91. ; $\partial f$ ; confidence 0.998
92. ; $\theta \in \Theta _ { 0 }$ ; confidence 0.998
93. ; $u ( x , t )$ ; confidence 0.998
94. ; $\operatorname { log } h / \sqrt { 1 - x ^ { 2 } } \in L _ { 1 } [ - 1,1 ]$ ; confidence 0.998
95. ; $p = \Omega ( n ^ { - 1 / 2 } )$ ; confidence 0.998
96. ; $\nabla ( \lambda ) ^ { * }$ ; confidence 0.998
97. ; $A \phi = \lambda \phi$ ; confidence 0.998
98. ; $W ( \rho ) = W ( \overline { \rho } )$ ; confidence 0.998
99. ; $U ( t + h ) - U ( t )$ ; confidence 0.998
100. ; $h = b - a$ ; confidence 0.998
101. ; $\tau ( x , y ) = \tau ( x - y )$ ; confidence 0.998
102. ; $u \in \mathcal{D} ^ { \prime } ( \Omega )$ ; confidence 0.998
103. ; $\gamma \delta = \delta \gamma + ( 1 - q ^ { - 2 } ) \gamma \alpha ,$ ; confidence 0.998
104. ; $\pi_f ( x )$ ; confidence 1.000
105. ; $R _ { 12 } R _ { 23 } R _ { 12 } = R _ { 23 } R _ { 12 } R _ { 23 }$ ; confidence 0.998
106. ; $\alpha ( A - K ) < \infty$ ; confidence 0.998
107. ; $f \in H ^ { 1 } ( D )$ ; confidence 0.998
108. ; $\gamma : [ 0 , \infty ) \rightarrow M$ ; confidence 0.998
109. ; $p ^ { \prime } = p / p - 1$ ; confidence 0.998
110. ; $H ^ { \infty } ( \Delta )$ ; confidence 0.998
111. ; $M N ^ { T } = N M ^ { T }$ ; confidence 0.998
112. ; $G _ { K } ( V ) = G$ ; confidence 0.998
113. ; $( F A ) B = B A$ ; confidence 0.998
114. ; $\theta = 1 - 1 / p = 1 / p ^ { \prime }$ ; confidence 0.998
115. ; $\Gamma _ { A }$ ; confidence 0.998
116. ; $( \Omega _ { + } - 1 ) \psi ( t )$ ; confidence 0.998
117. ; $H = \{ g \in G : \tau ( g ) = g \}$ ; confidence 0.998
118. ; $X , Y \in \Phi$ ; confidence 0.998
119. ; $( \xi _ { 1 } , \xi _ { 2 } )$ ; confidence 0.998
120. ; $\pi : Y \rightarrow B$ ; confidence 0.998
121. ; $\sigma = 0,1,2,3$ ; confidence 0.998
122. ; ${\cal{L}} ( Y , X )$ ; confidence 1.000
123. ; $> 0$ ; confidence 0.998
124. ; $N ( \alpha , \beta , \theta )$ ; confidence 0.998
125. ; $( \Omega , A , \mu )$ ; confidence 0.998
126. ; $r : R \rightarrow B$ ; confidence 0.998
127. ; $U + V$ ; confidence 0.998
128. ; $z _ { 0 } \in \rho ( A )$ ; confidence 0.998
129. ; $X ( i ) \times I ^ { k }$ ; confidence 0.998
130. ; $( p y ^ { \prime } ) ^ { \prime } + q y = 0 , p > 0,$ ; confidence 0.998
131. ; $g ( \omega , J )$ ; confidence 0.998
132. ; $\alpha ( A - S ) < \infty$ ; confidence 0.998
133. ; $( X , \tau )$ ; confidence 0.998
134. ; $X _ { 1 } ( p \times ( n - m ) )$ ; confidence 0.998
135. ; $q = 32$ ; confidence 0.998
136. ; $( n , q ) = ( 3,4 )$ ; confidence 0.998
137. ; $\beta \geq 0$ ; confidence 0.998
138. ; $\chi ^ { \prime } ( G ) = \chi _ { l } ^ { \prime } ( G )$ ; confidence 0.998
139. ; $z ^ { \sigma }$ ; confidence 0.998
140. ; $g ( x )$ ; confidence 0.998
141. ; $\alpha , \beta \in \bf{C}$ ; confidence 1.000
142. ; $( x , y ) \in \cal{J}$ ; confidence 1.000
143. ; $s > 1 / p$ ; confidence 0.998
144. ; $\xi , \eta \in L _ { 2 } ( G )$ ; confidence 0.998
145. ; $\mathbf{B} = \nabla \times \mathbf{A}$ ; confidence 0.998
146. ; $L ^ { 1 } ( x , \infty )$ ; confidence 0.998
147. ; $f , g \in H ^ { 0 }$ ; confidence 0.998
148. ; $f_- ( \{ \infty \} )$ ; confidence 1.000
149. ; $\| \varphi \| = \int \int _ { R } | \varphi ( z ) | d x d y$ ; confidence 0.998
150. ; $.\operatorname { exp } ( i A ( x ) ) + o ( 1 ),$ ; confidence 0.998
151. ; $\theta = \frac { \phi - 1 } { \phi - 1 - \phi \mu },$ ; confidence 0.998
152. ; $0 < \alpha < \pi / 2$ ; confidence 0.998
153. ; $\psi \in H ^ { \infty }$ ; confidence 0.998
154. ; $f ( U )$ ; confidence 0.998
155. ; $B _ { p } ( G , G )$ ; confidence 0.998
156. ; $c \leq 1 / 4$ ; confidence 0.998
157. ; $\xi _ { 1 } A _ { 1 } + \xi _ { 2 } A _ { 2 }$ ; confidence 0.998
158. ; $f ( x _ { n } ) = 0$ ; confidence 0.998
159. ; $( t , t + h ]$ ; confidence 0.998
160. ; $k = 1,2$ ; confidence 0.998
161. ; $\phi \in B _ { p } ^ { 1 / p }$ ; confidence 0.998
162. ; $f \in C ( \Gamma ) \cap L ^ { 1 } ( \Gamma )$ ; confidence 0.998
163. ; $H ^ { 1 } ( D )$ ; confidence 0.998
164. ; $D : V \rightarrow V$ ; confidence 0.998
165. ; $b > 1$ ; confidence 0.998
166. ; $L ^ { * } = L ^ { - 1 }$ ; confidence 0.998
167. ; $( Y , d )$ ; confidence 0.998
168. ; $1 \leq i \leq j \leq d$ ; confidence 0.998
169. ; $\angle \Omega A B$ ; confidence 0.998
170. ; $( 176,50,14 )$ ; confidence 0.998
171. ; $0 < \tau \leq 1$ ; confidence 0.998
172. ; $\phi = 1$ ; confidence 0.998
173. ; $R ( t ^ { \lambda } )$ ; confidence 0.998
174. ; $b ( t )$ ; confidence 0.998
175. ; $\operatorname { deg } f _ { i } > i$ ; confidence 0.998
176. ; $( h - 1 )$ ; confidence 0.998
177. ; $g ( x , k )$ ; confidence 0.998
178. ; $B \lambda$ ; confidence 0.998
179. ; ${\cal{D}} _ { E } [ 0 , \infty )$ ; confidence 1.000
180. ; $\rho ( - u ) = \rho ( u )$ ; confidence 0.998
181. ; $\mathcal{V} = \frac { 4 } { 3 } \pi \sigma ^ { 2 } N,$ ; confidence 1.000
182. ; $( \partial _ { t } + \Delta ) u = 0,$ ; confidence 0.998
183. ; $( Y ( t ) , t \in [ 0 , T ] )$ ; confidence 0.998
184. ; $\sigma ( x ) = ( x , y ( x ) )$ ; confidence 0.998
185. ; $D _ {\cal{ M} }$ ; confidence 1.000
186. ; $\omega ( G ) \neq 1$ ; confidence 0.998
187. ; $F \equiv ( \lambda x ( \lambda y ( y x ) ) )$ ; confidence 0.998
188. ; $V ^ { f } = \{ u \in V : \gamma ( u ) < \infty \},$ ; confidence 0.998
189. ; $\pi : A \rightarrow B ( H )$ ; confidence 0.998
190. ; $f ( T ) \subset K$ ; confidence 0.998
191. ; $\Psi ( x , \sigma ) = \chi ( x / \sigma )$ ; confidence 0.998
192. ; $\partial \iota ( M )$ ; confidence 0.998
193. ; $\tau _ { 0 } = 1$ ; confidence 0.998
194. ; $\Lambda = 0$ ; confidence 0.998
195. ; $A \in {\cal{M}} ^ { 1 }$ ; confidence 1.000
196. ; $ \operatorname { dim } F - \operatorname { dim } E$ ; confidence 1.000
197. ; $d u / d t = L u$ ; confidence 0.998
198. ; $\widetilde{T} ( z ) \rightarrow 0 $ ; confidence 1.000
199. ; $1 / ( 1 - e ^ { 2 \pi i z } )$ ; confidence 0.998
200. ; $J ( R )$ ; confidence 0.998
201. ; $f : X \rightarrow Y$ ; confidence 0.998
202. ; $p _ { 1 } ( \theta ) + \ldots + p _ { k } ( \theta ) = 1$ ; confidence 0.998
203. ; $( A , B )$ ; confidence 0.998
204. ; $t ( M ) = 1$ ; confidence 0.998
205. ; $T = T ^ { + }$ ; confidence 0.998
206. ; $\Omega \times \partial \Omega$ ; confidence 0.998
207. ; $c ( w ) < c ( u )$ ; confidence 0.998
208. ; $\alpha f ( T ) + \beta g ( T ) = ( \alpha f + \beta g ) ( T ),$ ; confidence 0.998
209. ; $\phi : [ 0 , T ] \rightarrow M$ ; confidence 0.998
210. ; $b _ { 1 } b _ { 2 } = 0$ ; confidence 0.998
211. ; $y \in C$ ; confidence 0.998
212. ; $( M , \Delta )$ ; confidence 0.998
213. ; $\eta > 0$ ; confidence 0.998
214. ; $\frac { \partial u } { \partial t } = \frac { \partial ^ { 3 } } { \partial x ^ { 3 } } \left( \frac { 1 } { \sqrt { u } } \right)$ ; confidence 0.998
215. ; $L ( X , Y )$ ; confidence 0.998
216. ; $P _ { \alpha } P _ { \beta } = P _ { \beta } P _ { \alpha } = P _ { \alpha }$ ; confidence 0.998
217. ; $q > n + 1$ ; confidence 0.998
218. ; $U _ { i } = \varphi _ { i } ( ( \pm \infty , 0 ) \times S ^ { 1 } )$ ; confidence 0.998
219. ; $\partial \Omega \in C ^ { 2 }$ ; confidence 0.998
220. ; $( z _ { 1 } , z _ { 2 } ) \in \partial D.$ ; confidence 0.998
221. ; $\frac { \partial f ( z , t ) } { \partial t } = - f ( z , t ) p ( f , t ),$ ; confidence 0.998
222. ; $( v ^ { \prime } , p ^ { \prime } )$ ; confidence 0.998
223. ; $n = - 1$ ; confidence 0.998
224. ; $\equiv K$ ; confidence 0.998
225. ; $f \in C ^ { 2 } ( U )$ ; confidence 0.998
226. ; $\text{l} ^ { 2 }$ ; confidence 0.998
227. ; $\alpha ( d \theta ) = d \theta$ ; confidence 0.998
228. ; $B = \sum _ { j = 1 } ^ { t } B _ { j }$ ; confidence 0.998
229. ; $b ( m )$ ; confidence 0.998
230. ; $k \leq ( n - 1 ) q + n,$ ; confidence 0.998
231. ; $\tau ( m n ) = \tau ( m ) \tau ( n )$ ; confidence 0.998
232. ; $( x , y , 0 )$ ; confidence 0.998
233. ; $M < 2 N$ ; confidence 0.998
234. ; $b ( u , v ) = ( B u , v )$ ; confidence 0.998
235. ; $k \geq 0$ ; confidence 1.000
236. ; $n = q + 1$ ; confidence 0.998
237. ; $\chi ^ { \prime } ( G )$ ; confidence 0.998
238. ; $f ( n ) = \alpha n ^ { k }$ ; confidence 0.998
239. ; $A ( y ) : = A ( 0 , y ) = 0$ ; confidence 0.998
240. ; $z \in A ^ { + }$ ; confidence 0.998
241. ; $( Y ^ { \prime } , X ^ { \prime } )$ ; confidence 0.998
242. ; $D : \Gamma ( \alpha ) \rightarrow \Gamma ( \beta )$ ; confidence 0.998
243. ; $[ P , P ] ^ { \wedge } = 0$ ; confidence 0.998
244. ; $\int \phi ( v ) Q ( f ) ( v ) d v = 0,$ ; confidence 0.998
245. ; $f ( x ) = \chi ( \pi ( x ) )$ ; confidence 0.998
246. ; $f :{ \cal{E}} \rightarrow Y _ { 1 } ( N )$ ; confidence 1.000
247. ; $B ( t , \omega )$ ; confidence 0.998
248. ; $g [ f ] ( x ) = f ( g ^ { - 1 } x )$ ; confidence 0.998
249. ; $2$ ; confidence 0.998
250. ; $h _ { 0 } = h _ { 1 } = 0$ ; confidence 0.998
251. ; ${\cal E} ^ { \prime } ( \Omega )$ ; confidence 1.000
252. ; $\mathcal{O} (\operatorname { log } m )$ ; confidence 1.000
253. ; $\text{ASPACETIME} \, [ s ( n ) , t ( n ) ]$ ; confidence 1.000
254. ; $\epsilon ( \lambda ) = 0$ ; confidence 0.998
255. ; $H_-$ ; confidence 1.000
256. ; $\chi \rightarrow \psi$ ; confidence 0.998
257. ; $\theta _ { 1 } = m / \sigma ^ { 2 }$ ; confidence 0.998
258. ; $1$ ; confidence 0.998
259. ; $\operatorname{meas} \, \{ A \}$ ; confidence 1.000
260. ; $c ( p , q )$ ; confidence 0.998
261. ; $\{ a , x \} \equiv \{ b , x \}$ ; confidence 0.998
262. ; $N : M \rightarrow S ^ { 2 }$ ; confidence 0.998
263. ; $( \mathcal{E} , \sigma _ { 1 } , \sigma _ { 2 } )$ ; confidence 1.000
264. ; $\Phi _ { - 1 } ( z ) = 0$ ; confidence 0.998
265. ; $\psi : ( u , v ) \rightarrow ( 2 u , 2 v )$ ; confidence 0.998
266. ; $T _ { \varphi } f = P ( \varphi f )$ ; confidence 0.997
267. ; $\dot { y } = A x,$ ; confidence 0.997
268. ; $\frac { f ^ { \prime } ( L ) } { f ( L ) } = \frac { g ^ { \prime } ( L ; m , s ) } { g ( L ; m , s ) }$ ; confidence 0.997
269. ; $y ( x , \lambda ) = \frac { \operatorname { sin } x } { 1 + ( 2 x - \operatorname { sin } 2 x ) ^ { 2 } }.$ ; confidence 0.997
270. ; $L _ { \infty } [ 0,1 ]$ ; confidence 0.997
271. ; $t - h ( t ) \rightarrow \infty$ ; confidence 0.997
272. ; $\sigma : R \rightarrow R$ ; confidence 0.997
273. ; $z ( \zeta )$ ; confidence 0.997
274. ; $g ( x , y ; H )$ ; confidence 0.997
275. ; $F \xi$ ; confidence 0.997
276. ; $\iota = 2 \pi {i} $ ; confidence 0.997
277. ; $X _ { k } = 1$ ; confidence 0.997
278. ; $m = 0$ ; confidence 0.997
279. ; $\xi A$ ; confidence 0.997
280. ; $f _ { 1 }$ ; confidence 0.997
281. ; $D ^ { * } ( h )$ ; confidence 0.997
282. ; $( x _ { 1 } - x _ { 2 } ) ( y _ { 1 } - y _ { 2 } ) < 0$ ; confidence 0.997
283. ; $\text{NTIME} \, [ s ( n ) ]$ ; confidence 1.000
284. ; $\phi ( z ) \neq 0$ ; confidence 0.997
285. ; $\phi = 0$ ; confidence 0.997
286. ; $L ^ { \infty } ( X , m )$ ; confidence 0.997
287. ; $\eta ( W ) d g ( W ) \in {\bf{R}}$ ; confidence 1.000
288. ; $| t | > 2$ ; confidence 0.997
289. ; $n > 2$ ; confidence 0.997
290. ; $\Gamma \varphi ( x , y ) = \varphi ( x y ^ { - 1 } )$ ; confidence 0.997
291. ; $y , \xi \in {\bf R }^ { N }$ ; confidence 1.000
292. ; $R ^ { \prime } \backslash E ^ { \prime }$ ; confidence 0.997
293. ; $\sigma _ { t } = \phi _ { t } \circ \sigma$ ; confidence 0.997
294. ; $H : U ^ { \prime } \times I \rightarrow U$ ; confidence 0.997
295. ; $G _ { 0 } ( z ) = ( z - H _ { 0 } ) ^ { - 1 }$ ; confidence 0.997
296. ; $\xi ( s ) : = \frac { 1 } { 2 } s ( s - 1 ) \pi ^ { - s / 2 } \Gamma \left( \frac { s } { 2 } \right) \zeta ( s ),$ ; confidence 0.997
297. ; $\alpha = - 1$ ; confidence 0.997
298. ; $[ A , A ] = 0$ ; confidence 0.997
299. ; $\phi ( x y ) = \phi ( y x )$ ; confidence 0.997
300. ; $\tau : B \rightarrow Q ( A )$ ; confidence 0.997
Maximilian Janisch/latexlist/latex/NoNroff/8. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/8&oldid=45902