User:Maximilian Janisch/latexlist/latex/NoNroff/72
List
1. ; $= \langle x _ { 1 } , \dots , x _ { m } | x _ { i } x ^ { k _ { i + 1} } = x _ { i + 2 } ; \text { indices } ( \operatorname { mod } m ) \rangle.$ ; confidence 0.208
2. ; $R _ { n } [ f ]$ ; confidence 0.208
3. ; $w _ { i } ^ { ( t + 1 ) } = \mathsf{E} ( q _ { i } | y _ { i } , \mu ^ { ( t ) } , \Sigma ^ { ( t ) } ) = \frac { \nu + p } { \nu + d _ { i } ^ { ( t ) } } , i = 1 , \dots , n,$ ; confidence 0.208
4. ; $m _ { E _ { 1 } , E _ { 2 } } ( A ) = c . \sum _ { B , C ; A = B \bigcap C } m _ { E _ { 1 } } ( B ) .m _ { E _ { 2 } } ( C )$ ; confidence 0.208
5. ; ${\bf Z} _ { i j }$ ; confidence 0.208
6. ; $G$ ; confidence 0.208
7. ; $\odot$ ; confidence 0.208
8. ; $Z _ { p }$ ; confidence 0.208
9. ; $\tilde{v} ( \tilde{u} _ { 1 } ) \leq 0$ ; confidence 0.208
10. ; $\| . \| _ { k }$ ; confidence 0.208
11. ; $( ( k _ { n } ) _ { n = 1 } ^ { \infty } , ( l _ { n } ) _ { n = 1 } ^ { \infty } )$ ; confidence 0.208
12. ; $\operatorname{Re} z$ ; confidence 0.208
13. ; $e_1$ ; confidence 0.208
14. ; $c : a \rightarrow b$ ; confidence 0.207
15. ; $: = \{ B = [ b _ { i , j } ] : b _ { i , i } = a _ { i , i } , \text { and } r _ { i } ( B ) = r _ { i } ( A ) , 1 \leq i \leq n \}.$ ; confidence 0.207
16. ; $+ h \sum _ { j = 1 } ^ { i - 1 } A _ { ij } ( h T ) [ f ( t _ { m } + c _ { j } h , u _ { m + 1 } ^ { ( j ) } ) - T u _ { m+1 } ^ { ( j ) } ],$ ; confidence 0.207
17. ; $\mathfrak{h} _ { n }$ ; confidence 0.207
18. ; $f : U \rightarrow {\bf R} ^ { n }$ ; confidence 0.207
19. ; $B _ { m } - B _ { n }$ ; confidence 0.207
20. ; $V _ { \xi } \subseteq_{ * } W$ ; confidence 0.207
21. ; $P _ { \theta ^ *} ( X _ { n - 1 }, d x )$ ; confidence 0.207
22. ; $x _ { n } \nearrow x \swarrow y _ { n }$ ; confidence 0.207
23. ; $T \rightarrow T | _ { P ^ { \prime } H}$ ; confidence 0.207
24. ; $( m , X _ { 1 } , \dots , X _ { s_i } ) ^ { c }$ ; confidence 0.207
25. ; $\xi = e ^ { i a\operatorname{ln} \tau } f$ ; confidence 0.207
26. ; $\left\lfloor \frac { n } { 2 } \right\rfloor \left\lfloor \frac { n - 1 } { 2 } \right\rfloor \left\lfloor \frac { m } { 2 } \right\rfloor \left\lfloor \frac { m - 1 } { 2 } \right\rfloor.$ ; confidence 0.206
27. ; $\overset{\rightharpoonup} { x } _ { j }$ ; confidence 0.206
28. ; $\frac { d N } { d t } = \lambda N \left( 1 - \left( \frac { N } { K } \right) ^ {a } \right),$ ; confidence 0.206
29. ; $p _ { n } ( s ) = \sum _ { m = 1 } ^ { n } a _ { m } m ^ { - s }$ ; confidence 0.206
30. ; $r_1$ ; confidence 0.206
31. ; $\mu _ { n } ( X ) : = \mu ( X ) / \sum _ { |Y| = n } \mu ( Y )$ ; confidence 0.206
32. ; $f _ { i + 1 / 2 } ^ { \operatorname { mac } } = \left\{ \begin{array} { l } { \frac { 1 } { 2 } ( \hat { f } _ { i } ^ { + } + f _ { i + 1 } ^ { n } ) } \\ { \text { or } } \\ { \frac { 1 } { 2 } ( \hat { f } _ { i + 1 } ^ { - } + f _ { i } ^ { n } ). } \end{array} \right.$ ; confidence 0.206
33. ; ${\bf q} _ { k }$ ; confidence 0.206
34. ; $X = I _ { A _ { 1 } } + \ldots + I _ { A _ { n } }$ ; confidence 0.206
35. ; ${\bf C} \backslash \sigma _ { \text{lre} } ( T )$ ; confidence 0.206
36. ; $w ^ { * }$ ; confidence 0.206
37. ; $l ^ { p }$ ; confidence 0.206
38. ; $\hat { y } = ( \hat { y } _ { 1 } , \dots , \hat { y } _ { n } ) \in \hat { A } [ [ X ] ] ^ { n }$ ; confidence 0.205
39. ; $E ^ { * * }$ ; confidence 0.205
40. ; $\int _ { Y } \int_X f _ { X , Y } d X d Y = 1$ ; confidence 0.205
41. ; ${\frak A} [ D ]$ ; confidence 0.205
42. ; $= \{ z \in {\cal D} : \operatorname { lim\,inf } _ { w \rightarrow x } [ K _ {\cal D } ( z , w ) - K _ {\cal D } ( z_0 , w ) ] < \frac { 1 } { 2 } \operatorname { log } R \},$ ; confidence 0.205
43. ; $\Delta _ { n } = \{ 0 , \dots , n \}$ ; confidence 0.205
44. ; $D ( \Delta ) = H _ { o } ^ { 1 } \cap H ^ { 2 } ( \Omega )$ ; confidence 0.205
45. ; $\sigma : a \mapsto a b , b \mapsto b , \gamma _ { r } : a \mapsto a ^ { r + 1 } b ^ { 2 } a ^ { - r } , r \geq 1,$ ; confidence 0.205
46. ; $C _ { k }$ ; confidence 0.205
47. ; $= - I ^ { \kappa_a } ( b ) \in ( - \infty , 0 ) , \text { for all } 0 < b < \kappa _ { a },$ ; confidence 0.205
48. ; $h_* ^ { S }$ ; confidence 0.205
49. ; $H _ { i }$ ; confidence 0.205
50. ; $H ^ { 0 } ( f ^ { - 1 } ( y ) , G ) = G , H ^ { q } ( f ^ { - 1 } ( y ) , G ) = 0$ ; confidence 0.205
51. ; $a = 1 , \dots , \text{l}$ ; confidence 0.205
52. ; $\kappa_2$ ; confidence 0.205
53. ; $ { h } \equiv 1$ ; confidence 0.204
54. ; $\hat { t } \square ^ { * } : H ^ { n + 1 } ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \rightarrow H ^ { n + 1 } ( \Gamma _ { \overline{D} \square ^ { n + 1 } } , \Gamma _ { S ^ { n } } )$ ; confidence 0.204
55. ; $x ^ { ( n ) } + a _ { n - 1} z ^ { ( n - 1 ) } + \dots + a _ { 0 } x = 0,$ ; confidence 0.204
56. ; $K , L \in {\cal K} ^ { n }$ ; confidence 0.204
57. ; $ { l } _ { 1 }$ ; confidence 0.204
58. ; $\xi |_ { A }$ ; confidence 0.204
59. ; $I _ { 1 }$ ; confidence 0.204
60. ; $\operatorname{CF} ( \zeta - z , w ) = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { n } } \frac { \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } w _ { k } d w [ k ] \wedge d \zeta } { \langle w , \zeta - z \rangle ^ { n } },$ ; confidence 0.204
61. ; $\overline { b }_1$ ; confidence 0.204
62. ; ${\bf a}^ { ( t ) } = ( a _ { t } , a _ { t + 1} , \dots , a _ { n + t - 1 }) ( t \geq 0 )$ ; confidence 0.204
63. ; $T _ { n } T _ { m } = \sum _ { d | ( n , m ) } d ^ { k - 1 } T _ { m n / d^2 } ,$ ; confidence 0.203
64. ; $d$ ; confidence 0.203
65. ; $\int _ { I } | \varphi - \varphi _ { I } | ^ { 2 } d \vartheta \leq c ^ { 2 } | I |$ ; confidence 0.203
66. ; $S\circ . = . \circ \Psi _ { B , B } \circ ( S \bigotimes S )$ ; confidence 0.203
67. ; $x = ( x _ { 1 } , \dots , x _ { n } ) \in {\bf T} ^ { n }$ ; confidence 0.203
68. ; $A ^ { - \infty } = \cup _ { p > 0 } L _ { a } ^ { p }$ ; confidence 0.203
69. ; $a _ {i j k }$ ; confidence 0.203
70. ; $H _ { p } ^ { r _ { 1 } , \dots , r _ { i - 1 } , r _ { i } + \epsilon , r _ { i + 1 } , \dots , r _ { n } }$ ; confidence 0.203
71. ; $\hat { \psi } ( x , k ) \approx \begin{cases} { e ^ { - i k x } + b ( k ) e ^ { i k x } } & {\text { as } x \xrightarrow{\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad } \infty,} \\ { a ( k ) e ^ { - i k x } } & { \text { as } x \xrightarrow{\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad } - \infty.} \end{cases}$ ; confidence 0.203
72. ; $C ^ { n } ( {\cal C} , M ) = \prod _ { \langle \alpha _ { 1 } , \dots , \alpha _ { n } \rangle } M ( \operatorname { codom } \alpha _ { n } ) , n > 0,$ ; confidence 0.202
73. ; $- E$ ; confidence 0.202
74. ; ${\cal L} _ { n }$ ; confidence 0.202
75. ; $\mathsf{E} [ W ] _ { \operatorname { exh } } = \frac { \delta ^ { 2 } } { 2 r } + \frac { P \lambda { b } ^ { ( 2 ) } + r ( P - \rho ) } { 2 ( 1 - \rho ) },$ ; confidence 0.202
76. ; $a , b \in A _ { m }$ ; confidence 0.202
77. ; $\{ e _ { i } \} _ { 1 } ^ { n }$ ; confidence 0.202
78. ; $\hat { u } ( \xi ) = \int e ^ { - 2 i \pi x . \xi } u ( x ) d x,$ ; confidence 0.202
79. ; $\operatorname { l(f } ^ { \prime } ( x ) ) = \operatorname { min } \{ | f ^ { \prime } ( x ) h | : | h | = 1 \}.$ ; confidence 0.202
80. ; $D x ^ { n }$ ; confidence 0.202
81. ; $( a _ { k } ) _ { k = 0 , \dots , N - 1}$ ; confidence 0.202
82. ; $\tilde {\bf Q }$ ; confidence 0.202
83. ; $x _ { n } \in \mathfrak { H }$ ; confidence 0.202
84. ; $\| d \| _ {\cal P M ^* } = \operatorname { sup } _ { n \geq 0 } \frac { 1 } { n + 1 } \sum _ { k = - n } ^ { n } | d _ { k } |$ ; confidence 0.201
85. ; $\operatorname { l } _ { p } ^ { p } ( P , Q ) = \int _ { 0 } ^ { 1 } | F ^ { - 1 } ( u ) - G ^ { - 1 } ( u ) | ^ { p } d u , p \geq 1,$ ; confidence 0.201
86. ; $L _ { \gamma , n } = L _ { \gamma , n } ^ { c }$ ; confidence 0.201
87. ; $\int _ { {\cal S} ^ { \prime } ( {\bf R} ) } e ^ { i \langle x , \xi \rangle } d \mu ( x ) = e ^ { - \| \xi \| _ { 2 } ^ { 2 } / 2 } , \xi \in {\cal S} ( {\bf R} )$ ; confidence 0.201
88. ; $( z _ { k } , \ldots , z _ { k + r - 1})$ ; confidence 0.201
89. ; $\operatorname{Vol}( M ) \leq v , | \text { sec. curv. } M | \leq \kappa,$ ; confidence 0.201
90. ; $a$ ; confidence 0.201
91. ; $\operatorname{Ch} ( \operatorname{ ind } ( P ) ) = ( - 1 ) ^ { n } \pi_{ *} ( \operatorname { ind } ( [ a ] ) {\cal T} ( M | B ) ).$ ; confidence 0.201
92. ; ${\cal P} _ { \text{E} } ^ { \# } ( n ) \sim \frac { 1 } { 468 \sqrt { \pi } } 4 ^ { n } n ^ { - 7 / 2 } \text { as } n\rightarrow \infty.$ ; confidence 0.201
93. ; $a _ { i1 } f _ { 1 } + \ldots + a _ { i l } f _ { l } = 0 , i = 1 , \ldots , m,$ ; confidence 0.201
94. ; $g_2 ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } ^ { \prime \prime } ( k ) z _ { j } ^ { k }$ ; confidence 0.201
95. ; $e ^ { k .\operatorname { ln } k }$ ; confidence 0.201
96. ; $\mu ( 0 , x ) = - \sum _ { u } \mu ( 0 , u ),$ ; confidence 0.201
97. ; $\hat { E }_8$ ; confidence 0.201
98. ; $\langle {\bf M e} _ { {\cal S} _ { P }} \mathfrak { M } / \Omega F _ { {\cal S}_P } \mathfrak { M } , F _ { {\cal S} _ { P } } \mathfrak { M } / \Omega F _ { {\cal S} _ { P }} \mathfrak { M } \rangle$ ; confidence 0.201
99. ; $\aleph_1$ ; confidence 0.200
100. ; $\operatorname { mng }_{{\cal S} _ { P } , \mathfrak { M }} = \operatorname { mng }_{{\cal S} _ { P } , \mathfrak { M }} \circ h$ ; confidence 0.200
101. ; $a _ { i 1 } f _ { 1 } + \ldots + a _ { i l } f _ { l } = b _ { i } , i = 1 , \ldots , m,$ ; confidence 0.200
102. ; $\rho_f \left( 1 , u _ { f } , \frac { 1 } { 2 } | u_f | ^ { 2 } + \frac { N } { 2 } T _ { f } \right) = \int \left( 1 , v , \frac { | v |^ { 2 } } { 2 } \right) f ( v ) d v.$ ; confidence 0.200
103. ; $\operatorname{ord} _ { p } \square ( E / K ) \leq 2 \text { ord } _ { p } [ E ( K ) : {\bf Z} y _ { K } ].$ ; confidence 0.200
104. ; $\| e ^ { i \zeta \cal A } \| \leq C ^ { \prime } ( 1 + | \zeta | ) ^ { s ^ { \prime } } e ^ { r | \operatorname { Im } \zeta | }$ ; confidence 0.200
105. ; $\operatorname {mex} S= \operatorname { min } \overline{S} =$ ; confidence 0.200
106. ; $\frac { e ^ { - ( x + \lambda ) / 2 } x ^ { ( n - 2 ) / 2 } } { 2 ^ { n / 2 } \Gamma ( 1 / 2 ) } \sum _ { r = 0 } ^ { \infty } \frac { \lambda ^ { r } x ^ { r } } { ( 2 r ) ! } \frac { \Gamma ( r + 1 / 2 ) } { \Gamma ( r + n / 2 ) },$ ; confidence 0.200
107. ; $d = d + ( \alpha - ( y _ { n-1 } ^ { T } { d } / y _ { n - 1 } ^ { T } s _ { n - 1 } ) s _ { n - 1 }$ ; confidence 0.200
108. ; $S _ { 0 } , \ldots , S _ { n - 1 }$ ; confidence 0.200
109. ; ${\frak h} ^ { e ^ { * } }$ ; confidence 0.200
110. ; $= \sum _ { j , m } K ( z _ { m } , y _ { j } ) c _ { j } \overline { \beta _ { m } }.$ ; confidence 0.200
111. ; $\mu ( \overline { \emptyset } , X ) = \sum _ { A : \overline { A } = X } ( - 1 ) ^ { | A | }$ ; confidence 0.200
112. ; $\hat { c } ^ { 2 }_k$ ; confidence 0.199
113. ; $> | z _ { h _ { 1 } } + 1 | \geq \ldots \geq | z _ { h _ { 2 } } | > \delta _ { 2 } \geq$ ; confidence 0.199
114. ; $A u \in B ( D _ { A } ( \alpha , \infty ) ) \bigcap C ^ { \alpha } ( [ 0 , T ] ; X )$ ; confidence 0.199
115. ; $| \overline{X} _ { n } | = \operatorname { sup } _ { t } | X _ { n } ( t ) |$ ; confidence 0.199
116. ; $\frac { 2 \nu_2 ^ { 2 }( \nu _ { 1 } + \nu _ { 2 } - 2 ) } { \nu _ { 1 } ( \nu _ { 2 } - 2 ) ^ { 2 } ( \nu _ { 2 } - 4 ) } \quad \text { for } \nu _ { 2 } > 4.$ ; confidence 0.199
117. ; $\iota_0$ ; confidence 0.199
118. ; $\mathsf {P} [ \tau \in I ] = | I | / ( 2 \pi )$ ; confidence 0.199
119. ; ${\cal S} \operatorname {q} ^ { i } x _ { n } = 0$ ; confidence 0.199
120. ; $F ^ { ( 0 ) } ( u ) = I _ { [ 0 , \infty ) } ^ { ( u ) }$ ; confidence 0.199
121. ; $f ( T ) = \sum _ { n = 0 } ^ { \infty } \alpha _ { n } T ^ { n }$ ; confidence 0.199
122. ; $C ^ { k }$ ; confidence 0.199
123. ; $| V |$ ; confidence 0.199
124. ; $d_1$ ; confidence 0.199
125. ; $\left. \frac { d } { d t } {\cal A} ( \sigma _ { t } ) \right| _ { t = 0 } = \left. \frac { d } { d t } \int _ { M } \sigma ^ { k ^ { * } } \phi _ { t } ^ { k ^ { * } } ( L \Delta ) \right| _ { t = 0 } =$ ; confidence 0.198
126. ; $f : {\bf R} ^ { m } \rightarrow {\bf R} ^ { n }$ ; confidence 0.198
127. ; $\tilde{T} : {\bf C} ^ { m + 1 } \rightarrow {\bf C} ^ { n + 1 }$ ; confidence 0.198
128. ; $\forall x _ { 1 } \dots \forall x _ { n } ( P { x_1 \dots x _ { N }} \leftrightarrow \varphi ( x _ { 1 } , \ldots , x _ { n } ) )$ ; confidence 0.198
129. ; $\operatorname { Var } _ { \mathsf {P} _ { 0 } } ( d ^ { * } ) =$ ; confidence 0.198
130. ; $\operatorname {Alg} \operatorname {Mod} ^ { * S} { \cal D }$ ; confidence 0.198
131. ; $T _ { a }$ ; confidence 0.197
132. ; $( \varphi | _ { k } ^ { \mathbf{v} } M ) ( z ) = {\bf v} ( M ) ( cz + d ) ^ { - k } \varphi ( M z ).$ ; confidence 0.197
133. ; $a \neq 0 \in{\bf F}_ { q }$ ; confidence 0.197
134. ; $( z _ { k } , \ldots , z _ { k + r - 1} ) \neq ( 0 , \dots , 0 )$ ; confidence 0.197
135. ; $f = \vee _ { i = 1 } ^ { n } a _ { i } \chi _ { B _ { i } } , \quad B _ { i } = \bigcup _ { j = i } ^ { n } A _ { i }.$ ; confidence 0.197
136. ; $\theta . w : = \sum ^ { 3 _{ j = 1}} \theta _ { j } w _ { j }$ ; confidence 0.197 NOTE: it would probably be better to write $\sum ^ { 3} _{ j = 1}$
137. ; $a _ { j } \in K$ ; confidence 0.197
138. ; $q _I( x ) = \sum _ { i \in I } x _ { i } ^ { 2 } + \sum _ { \substack {i \prec j} \\{j\in I\backslash \operatorname {max} I} } x _ { i } x _ { j } - \sum _ { p \in \operatorname { max } I } ( \sum _ { i \prec p } x _ { i } ) x _ { p }$ ; confidence 0.197
139. ; $l _ { ab }$ ; confidence 0.196
140. ; $x \in N$ ; confidence 0.196
141. ; $\Delta f _ { i } = A _ { i , r + 1 } f _ { r + 1 } + \ldots + A _ {i , l } f _ { l },$ ; confidence 0.196
142. ; $\mathfrak { A } \equiv_l \mathfrak { B }$ ; confidence 0.196
143. ; $r_0$ ; confidence 0.196
144. ; $n, z_1, \dots, z_n$ ; confidence 0.196
145. ; $\beta _ { n , F }$ ; confidence 0.196
146. ; $g = e$ ; confidence 0.195
147. ; $( E _ { r } ^ { p q } , d _ { r } ^ { p q } )$ ; confidence 0.195
148. ; $U _ { q } ( {\frak g} ) = U _ { q } ( n _ { - } ) {\color{blue} \rtimes} H {\color{blue} \ltimes } U _ { q } ( n _ { + } )$ ; confidence 0.195
149. ; $\rightarrow \pi _ { n } ( X , B , * ) \rightarrow \pi _ { n } ( X ; A , B , x _ { 0 } ) \stackrel { \partial } { \rightarrow } \ldots,$ ; confidence 0.195
150. ; $( ( _- ) \otimes _ {{\bf F}_p } H ^ { * } B V ) :\cal U \rightarrow U$ ; confidence 0.195
151. ; $\Delta f = 1 \bigotimes f + x \bigotimes \partial _ { q } f +\dots$ ; confidence 0.195
152. ; $d \tilde { \pi } ^ { c } ( X ) = d \tilde { \pi } ( X )$ ; confidence 0.195
153. ; ${\bf Alg}_\models ( {\cal L} )$ ; confidence 0.194
154. ; $g$ ; confidence 0.194
155. ; ${\bf c} _ { k }$ ; confidence 0.194
156. ; $\{ f ^ { a } \}$ ; confidence 0.194
157. ; $( N _ { * } ^ { 1 } , \ldots , N _ { * } ^ { n } )$ ; confidence 0.194
158. ; $f _ { h } ( x ) = h ^ { - 1 } \int _ {\bf R } \varphi \left( \frac { t } { h } \right) f ( x - t ) d t.$ ; confidence 0.194
159. ; $\hat { f } ( \xi ) = \int _ { {\bf R} ^ { n } } e ^ { - i x \xi } f ( x ) d x$ ; confidence 0.194
160. ; $ c _ { i } \in \bf R$ ; confidence 0.194
161. ; $K _ { |e| } ( V )$ ; confidence 0.194
162. ; $ { I } _ { n }$ ; confidence 0.194
163. ; $\overline { D } _ { k } = U ( {\frak a} ) \otimes_{U ( {\frak p} )} \wedge ^ { k } ( {\frak a}/ \frak{p} )$ ; confidence 0.194
164. ; $\widetilde { d ^ { 2 } f _ { x } } : K _ { x } \times T V _ { x } \rightarrow Q _ { x },$ ; confidence 0.194
165. ; $T _ { n } ( a ) = ( a _ { j - k } ) _ { j , k = 0 } ^ { n - 1 }$ ; confidence 0.194
166. ; $M \subseteq \text { Mono } ( \mathfrak { A } )$ ; confidence 0.193
167. ; ${\cal M} ( \tilde { x } _ { + } , \tilde { x } _ { - } ) / \bf R$ ; confidence 0.193
168. ; $l ^ { n }$ ; confidence 0.193
169. ; $x \mapsto e ^ { r x }$ ; confidence 0.193
170. ; $z _ { i } ^ { n } \sim z _ { i + 1 } ^ { n }$ ; confidence 0.193
171. ; $\operatorname{sl} _ { 2 } ( {\bf R} )$ ; confidence 0.193
172. ; $_ { S } \in {\bf R} ^ { 1 }$ ; confidence 0.193
173. ; $e ^ { i ( p {\cal D} + q {\cal X} + t I ) }$ ; confidence 0.193
174. ; $\alpha _ { X } = \left( \begin{array} { l l l l } { 0 } & { 0 } & { 0 } & { 1 } \\ { 0 } & { 0 } & { 1 } & { 0 } \\ { 0 } & { 1 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 0 } & { 0 } \end{array} \right) = \left( \begin{array} { l l } {\bf 0 } & { \sigma _ { x } } \\ { \sigma _ { x } } & \bf{ 0 } \end{array} \right),$ ; confidence 0.193
175. ; $a_1 , \dots , a _ { n }$ ; confidence 0.193
176. ; $W$ ; confidence 0.193
177. ; $d \Omega _ { n } = d \hat { \Omega } _ { n } - \sum _ { 1 } g \left( \oint _ { A _ { j } } d \hat { \Omega} _ { n } \right) d \omega _ { j }$ ; confidence 0.193
178. ; $A \stackrel { f } { \rightarrow } B = A \stackrel { e } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B,$ ; confidence 0.193
179. ; $V _ { q } ^ { p }$ ; confidence 0.193
180. ; $\pi _ { n } ( X ; A , B , * ) = \pi _ { n - 1 } ( \Omega ( X ; B , * ) , \Omega ( A ; A \bigcap B , * ) , * ).$ ; confidence 0.193
181. ; $\widehat { \operatorname {CH} \square } ^ { p } ( X )$ ; confidence 0.193
182. ; $X ^ { \omega \chi ^ { - 1 }} = \{ x \in X : \delta . x = \omega \chi ^ { - 1 } ( \delta ) x \text{ for } \delta \in \Delta \},$ ; confidence 0.193
183. ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { 1 } { n } \operatorname { log } \mathsf {P} [ X _ { 1 } + \ldots + X _ { n } \geq n m ] = \int _ { m _ { 0 } } ^ { m } \frac { x - m } { V _ { F } ( x ) } d x.$ ; confidence 0.193
184. ; $V \subset {\bf C} ^ { m }$ ; confidence 0.192
185. ; $P = \bigcup _ { n _ { 1 } , \dots , n _ { k } , \dots } \bigcap _ { k = 1 } ^ { \infty } E _ { n _ { 1 } \square \dots n _ { k }},$ ; confidence 0.192
186. ; $e_{ij}$ ; confidence 0.192
187. ; ${\bf P} ^ { m } \backslash X$ ; confidence 0.192
188. ; $( e _ { i } ) ^ { k } . v = 0 = ( f _ { i } ) ^ { k } . v$ ; confidence 0.192
189. ; $ { G } _ { i } \Theta _ { i }$ ; confidence 0.192
190. ; $\kappa_1$ ; confidence 0.192
191. ; $x _ { k }$ ; confidence 0.192
192. ; $L _ { n } = \operatorname {SU} ( 2 ) / {\bf Z} _ { n }$ ; confidence 0.192
193. ; $D _ { n } H_{*} \Omega ^ { \infty } X$ ; confidence 0.192
194. ; $v _ { i_1 } , \dots , v _ { i_k }$ ; confidence 0.191
195. ; $\{ \epsilon_l \}$ ; confidence 0.191
196. ; $p_2$ ; confidence 0.191
197. ; $R _ { c } ( p ; k , n )$ ; confidence 0.191
198. ; $S _ { R } ^ { \delta } ( f ) ( x ) = \sum _ { | m | \leq R } \left( 1 - \frac { | m | ^ { 2 } } { R ^ { 2 } } \right) ^ { \delta } e ^ { 2 \pi i x m } \hat { f } ( m ),$ ; confidence 0.191
199. ; $( X _ { n } ) _ { n \in {\bf Z} ^ { d }}$ ; confidence 0.191
200. ; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { for } n= 1, } \\ { \gamma > 0 } & { \text { for }n = 2, } \\ { \gamma \geq 0 } & { \text { for } n\geq 3. } \end{array} \right.$ ; confidence 0.191
201. ; $l = 1$ ; confidence 0.191
202. ; $\times \left[ \operatorname {CF} ( \zeta - z , w ) - \frac { ( n - 1 ) ! ( | \zeta | ^ { 2 m } - \langle \overline { \zeta } , z \rangle ^ { m } ) ^ { n } } { [ 2 \pi i | \zeta | ^ { 2 m } \langle \overline { \zeta } , \zeta - z \rangle ] ^ { n } } \sigma _ { 0 } \right],$ ; confidence 0.191
203. ; $\langle p , q \rangle _ { s } = \sum _ { i = 0 } ^ { N } \lambda _ { i } \int _ { \bf R } p ^ { ( i ) } q ^ { ( i ) } d \mu _ { i },$ ; confidence 0.190
204. ; $\left. \begin{array} { c c c } { \square } & { c _ { 2 } } & { \square } \\ { \square } & { \square } & { \searrow ^ { \phi _ { 2 } } } \\ { \square ^ { \phi _ { 1 } } \nearrow } & { \vec { \phi _ { 3 } } } &{c_3} \end{array} \right. .$ ; confidence 0.190
205. ; $t ( G ) = t ( G / e ) + ( x - 1 ) ^ { r ( G ) - r ( G - e ) } t ( G - e )$ ; confidence 0.190
206. ; $\psi ^ { ( n ) } ( z ) = ( - 1 ) ^ { n + 1 } n ! \zeta ( n + 1 , z ),$ ; confidence 0.190
207. ; $\left( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \tilde { \gamma } \right) v = 0.$ ; confidence 0.190
208. ; $h = ( h _ { 1 } , \dots , h _ { m } ) \in N ^ { m } \subset A ^ { m }$ ; confidence 0.190
209. ; $ { i } \leq n$ ; confidence 0.190
210. ; $\frac { d N ^ { i } } { d t } = f ^ { i } ( N ^ { 1 } , \ldots , N ^ { n } ) , \quad i = 1 , \dots , n,$ ; confidence 0.190
211. ; $w ^ { \text{em} } = - \frac { 1 } { 2 } \frac { \partial } { \partial t } ( {\bf E} ^ { 2 } + {\bf B} ^ { 2 } ) - \nabla . ( {\bf S} - v ( {\bf P}.{\bf E}) ),$ ; confidence 0.190
212. ; $( \alpha _ { j + k} ) _ { j , k \geq 0}$ ; confidence 0.190
213. ; $\|v\|_{A_p (G)} \leq \| u \| _ { A_p(H) } + \epsilon$ ; confidence 0.190
214. ; $e ^ { - t A }x = \operatorname { lim } _ { n \rightarrow \infty } \left( I + \frac { t } { n } A \right) ^ { - n } x = S ( t ) x , \forall x \in X,$ ; confidence 0.189
215. ; $a _ { 1 } , \dots , a _ { d }$ ; confidence 0.189
216. ; $\operatorname {I} ( M ) = \sum _ { i = 0 } ^ { s - 1 } \left( \begin{array} { c } { s - 1 } \\ { i } \end{array} \right) .\operatorname { l}_ { A } ( H _ {\frak m } ^ { i } ( M ) )$ ; confidence 0.189
217. ; $h : = \operatorname { max } _ { n \in \bf N } \{ \sigma _ { n } - n \}$ ; confidence 0.189
218. ; $\Lambda _ { \cal D } T$ ; confidence 0.189
219. ; $I _ { \nu }$ ; confidence 0.189
220. ; $t _ { n+1/2 } = t _ { n } + k / 2$ ; confidence 0.189
221. ; $| h | _ { H } ^ { 2 }$ ; confidence 0.189
222. ; $r _ { i } > 0$ ; confidence 0.188
223. ; $\hat { y } _ { t , r } = \sum _ { j = r } ^ { \infty } K _ { j } \varepsilon _ { t + r - j }$ ; confidence 0.188
224. ; $H _ { K } ^ { n } ( D ^ { n } + i {\bf R} ^ { n } , \tilde {\cal O } )$ ; confidence 0.188
225. ; $= \left( 3 ^ { d + 1} \frac { 3 ^ { d + 1 } - 1 } { 2 } , 3 ^ { d } \frac { 3 ^ { d + 1 } + 1 } { 2 } , 3 ^ { d } \frac { 3 ^ { d } + 1 } { 2 } , 3 ^ { 2 d } \right),$ ; confidence 0.188
226. ; $f _ { L } ^ { \rightarrow } ( a ) ( y ) = \vee \{ a ( x ) : f ( x ) = y \},$ ; confidence 0.188
227. ; $\tau ( \sum a _ { i j }\overline{z} ^ { i } z ^ { j } ) = \sum a _ { i j } \gamma _ { i j }$ ; confidence 0.188
228. ; $\dot { x } = A x , \quad x \in {\bf R} ^ { n },$ ; confidence 0.188
229. ; $h = h ( M ) = \operatorname { inf } _ { \Gamma } \frac { \operatorname { Vol } ( \Gamma ) } { \operatorname { min } \{ \operatorname { Vol } ( M _ { 1 } ) , \text { Vol } ( M _ { 2 } ) \} },$ ; confidence 0.188
230. ; $\overline{c} ^ { a } ( x ) \overline{c} ^ { b } ( y ) = - \overline{c} ^ { b } ( y ) \overline{c} ^ { a } ( x ).$ ; confidence 0.188
231. ; $\operatorname { ord } _ { T } ( u d v ) = \operatorname { ord } _ { T } ( u d v / d \tau );$ ; confidence 0.188
232. ; $\underline{\operatorname { lim }} \leftarrow ^ { n }$ ; confidence 0.188
233. ; $\mathfrak { A } ^ { * S} = \mathfrak { A }$ ; confidence 0.188
234. ; $\sum _ { k = 1 } ^ { m } x _ { k } S _ { k } \leq \mathsf{P} ( A _ { 1 } \bigcup \ldots \bigcup A _ { n } ) \leq \sum _ { k = 1 } ^ { m } y _ { k } S _ { k },$ ; confidence 0.188
235. ; $\text{iff } \Gamma \vdash _ {\cal D } \Delta ( \varphi , \psi ).$ ; confidence 0.188
236. ; $A _ { 1 } = \left[ \begin{array} { c c c } { A _ { 11 } } & { \dots } & { A _ { 1 m } } \\ { \dots } & { \dots } & { \dots } \\ { A _ { m 1 } } & { \dots } & { A _ { m m } } \end{array} \right] \in C ^ { m n \times m n },$ ; confidence 0.187
237. ; $D _ { k } ^ { * }$ ; confidence 0.187
238. ; $|.|_p$ ; confidence 0.187
239. ; $P ( x , D ) u = ( 2 \pi ) ^ { - n } \int _ { {\bf R} ^ { n } } e ^ { i x \xi } p ( x , \xi ) \hat { u } ( \xi ) d \xi,$ ; confidence 0.187
240. ; $= \frac { ( \alpha + 1 ) _ { k + l } } { ( \alpha + 1 ) _ { k } ( \alpha + 1 ) _ { l } } \sum _ { j = 0 } ^ { \operatorname { min } ( k , l ) } \frac { ( - k ) _ { j } ( - l ) _j} { ( - k - l - \alpha )_j j ! } r ^ { k + l - 2 j }.$ ; confidence 0.187
241. ; $( \Delta \bigotimes \text { id } ) {\cal R} = {\cal R} _ { 13 } {\cal R} _ { 23 } , ( \text { id } \bigotimes \Delta ) {\cal R} = {\cal R} _ { 13 } {\cal R} _ { 12 },$ ; confidence 0.187
242. ; ${\cal O} = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187
243. ; $+ \frac { 1 } { 2 a } \int _ { x - a t } ^ { x + a t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ].$ ; confidence 0.187
244. ; $\tilde{x}_ - = ( x_ - , u_ - )$ ; confidence 0.187
245. ; $\left\{ \text { ad } e _ { - 1} ^ { p^k } : 0 < k < m \right\}$ ; confidence 0.187
246. ; $\left.\begin{array} { r l } { \Phi ^ { + } ( t _ { 0 } ) } & { = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } + \frac { 1 } { 2 } \phi ( t _ { 0 } ), } \\ { \Phi ^ { - } ( t _ { 0 } ) } & { = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } - \frac { 1 } { 2 } \phi ( t _ { 0 } ) ,} \end{array} \right\}$ ; confidence 0.187
247. ; ${\bf G} ^ { \text{em} } = {\bf G}^ { \text{em}.f },$ ; confidence 0.187
248. ; $\text{G}$ ; confidence 0.187
249. ; $a _ { m p ^ r} \equiv a _ { m p ^ { r - 1 } } ( \operatorname { mod } p ^ { 3 r } )$ ; confidence 0.187
250. ; $( u _ { i } ^ { n } + \hat { u } _ { i } ^ { + } ) / 2$ ; confidence 0.187
251. ; $\tilde { H } ^ { 1 } = \tilde { H } ^ { 1 } ( \Gamma , k , {\bf v} ; P ( k ) )$ ; confidence 0.187
252. ; $ { c } _ { k } ^ { \prime }$ ; confidence 0.187
253. ; $\| Y _ { m } \| _ { G } ^ { 2 } = \sum _ { i , j = 1 } ^ { k } g_{ij} \langle y _ { m + i - 1} , y _ { m + j - 1} \rangle.$ ; confidence 0.187
254. ; $+ ( 1 - \mu _ { x + t }d t ) e ^ { - \delta d t } V _ { t + d t } + o ( d t ),$ ; confidence 0.187
255. ; ${\frak gl} ( n , {\bf C} )$ ; confidence 0.187
256. ; ${\bf Z} [ X _ { 1 } , \dots , X _ { n } ]$ ; confidence 0.187
257. ; $\frac { \pi ^ { n } } { n \operatorname { vol } ( {\cal D} ) } \int _ { \partial \cal D } f ( \zeta ) \nu ( \zeta - a ) = f ( a ).$ ; confidence 0.186
258. ; $= ( F ( . ) , ( h ( .. , y ) , ( h (. , x ) , h ( .. , x ) ) _ { H } ) _ {\cal H } ) _ {\cal H } =$ ; confidence 0.186
259. ; $\alpha _ { 1 } , \dots , \alpha _ { \kappa }$ ; confidence 0.186
260. ; $H ^ { n } ( {\cal C} , M ) = \underline{\operatorname { lim }} \leftarrow ^ { n } M,$ ; confidence 0.186
261. ; $\tau _ { p }$ ; confidence 0.186
262. ; $f ( z ) = \frac { 1 } { ( 2 \pi i ) ^ { n} } \int _ { b _ { 0 } P } \frac { f ( \zeta ) d \zeta _ { 1 } \ldots d \zeta _ { n } } { ( \zeta _ { 1 } - z _ { 1 } ) \ldots ( \zeta _ { n } - z _ { n } ) } , z \in P,$ ; confidence 0.186
263. ; $\tilde { S } _ { n }$ ; confidence 0.186
264. ; $\frac { \partial ^ { 2 } } { \partial \theta _ { . } \partial \theta } Q ( \theta | \theta ^ { * } ) = \theta ^ { * }$ ; confidence 0.186
265. ; $p ^ { e_n}$ ; confidence 0.185
266. ; $d \Omega _ { A }$ ; confidence 0.185
267. ; $N B$ ; confidence 0.185
268. ; $( l _ { n } ) _ { n = 1 } ^ { \infty } $ ; confidence 0.185
269. ; $Q ^ { * } G _ { \text { inn } } = Q \otimes _ { C } C ^ { t } [ G _ { \text { inn } } ]$ ; confidence 0.185
270. ; $D = \operatorname { diag } \{ d _ { 0 } , \dots , d _ { n - 1 } \}$ ; confidence 0.185
271. ; $[ a , b ] = a b - ( - 1 ) ^ { p ( a ) p ( b ) } b a$ ; confidence 0.185
272. ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial \overline{z} _ { k }$ ; confidence 0.185
273. ; $x _ { 1 } , \dots , x _ { l }$ ; confidence 0.185
274. ; $\hat { R } _ { \hat{R} _ { S } ^ { A } } ^ { A } = \hat { R } _ { S } ^ { A } \text { on } {\bf R} ^ { n }$ ; confidence 0.185
275. ; $\operatorname { Clif } ({\bf R} ^ { m } )$ ; confidence 0.185
276. ; $H _ { p } ^ { r } ( {\bf R} ^ { n } )$ ; confidence 0.185
277. ; $\delta : \operatorname{sl}_ { 2 } \rightarrow \operatorname{sl} _ { 2 } \otimes sl _ { 2 }$ ; confidence 0.185
278. ; $\Omega ^ { \bullet } ( \tilde {\bf M } _ {\bf C } ) \overset{\sim}{\rightarrow} \operatorname { Hom } _ { K _ { \infty } } ( \Lambda ^ { \bullet } ( \mathfrak { g } / \mathfrak { k } ) , {\cal C} _ { \infty } ( \Gamma \backslash G ( {\bf R} ) \bigotimes {\cal M} _ {\bf C } ) ),$ ; confidence 0.185
279. ; $u _ { m + 1 } ^ { ( i ) } = R _ { 0 } ^ { ( i ) } ( c _ { i } h T ) u _ { m } +$ ; confidence 0.185
280. ; $\tilde{\bf E} _ { 8 }$ ; confidence 0.184
281. ; $x _ { \alpha }$ ; confidence 0.184
282. ; $c_2$ ; confidence 0.184
283. ; $X\backslash E \rightarrow Y \backslash \phi ( E )$ ; confidence 0.184
284. ; $( k _ { n } ) _ { n = 1 } ^ { \infty }$ ; confidence 0.184
285. ; $g : I \rightarrow {\bf R} ^ { m }$ ; confidence 0.184
286. ; $S _ { 3 } ( M )$ ; confidence 0.184
287. ; ${\bf Q} [ \zeta _ { { e } } ]$ ; confidence 0.184
288. ; ${\cal T} ^ { \# } ( n ) \sim C _ { 0 } q _ { 0 } ^ { n } n ^ { - 5 / 2 } \text { as } n \rightarrow \infty ,$ ; confidence 0.184
289. ; $r _ {\cal D } \otimes {\bf R} : H _ {\cal M } ^ { i + 1 } ( X , {\bf Q} ( i + 1 - m ) ) _ {\bf Z } \otimes {\bf R} \rightarrow H _ {\cal D } ^ { i + 1 } ( X _ { / \bf R } , {\bf R} ( i + 1 - m ) )$ ; confidence 0.184
290. ; $\alpha _ { x }$ ; confidence 0.184
291. ; $x \rightarrow \| a x \| + \| a x \|$ ; confidence 0.184
292. ; $f ^ { * } \in \text { Hom}_{\text{alg} } ( H ^ { * } ( Y , {\bf F} _ { p } ) , H ^ { * } ( X , {\bf F} _ { p } ) )$ ; confidence 0.183
293. ; $\operatorname{HF} _ { * } ^ { \text { inst } } ( Y , P _ { Y } ) \overset{\simeq}{\rightarrow} HF _ { * } ^ { \text { symp } } ( {\cal M} ( P ) , {\cal L} _ { 0 } , {\cal L} _ { 1 } ).$ ; confidence 0.183
294. ; ${\bf P}^ { n^* }$ ; confidence 0.183
295. ; ${\bf l} ( t , x ) = \operatorname { lim } _ { \epsilon \rightarrow 0 } \frac { 1 } { 2 \varepsilon } \int _ { 0 } ^ { t } 1_{( x - \varepsilon , x + \varepsilon )} ( W _ { s } ) d s,$ ; confidence 0.183
296. ; $\tilde{y}$ ; confidence 0.183
297. ; $r$ ; confidence 0.183
298. ; $h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$ ; confidence 0.183
299. ; $\{ \varphi _ { n _ { 1 } , n _ { 2 } , \ldots } : n _ { j } \geq 0 , n _ { 1 } + n _ { 2 } + \ldots = n , n \geq 0 \}$ ; confidence 0.183
300. ; $\partial d S / \partial \alpha_j = d \omega_j$ ; confidence 0.183
Maximilian Janisch/latexlist/latex/NoNroff/72. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/72&oldid=45870