Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/NoNroff/70

From Encyclopedia of Mathematics
Jump to: navigation, search

List

1. b12021051.png ; $k = 1 , \ldots , r = \operatorname { dim } \mathfrak{a} / \mathfrak{p}$ ; confidence 0.264 ; test

2. b1201009.png ; $( \mathcal{L} F ) _ { n } ( X ) = \{ H _ { n } , F _ { n } ( X ) \}$ ; confidence 0.264

3. f1302806.png ; $A \mathbf{x} \not\le \mathbf{b}$ ; confidence 0.264

4. r08094048.png ; $\{ a _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.264

5. w13012025.png ; $T _ { \text{V} }$ ; confidence 0.264

6. w120110258.png ; $\{ u \in \mathcal{S} ^ { \prime } ( \mathbf{R} ^ { n } ) : \forall a \in S ( m , G ) , a ^ { w } u \in L ^ { 2 } ( \mathbf{R} ^ { n } ) \}.$ ; confidence 0.264

7. t120200141.png ; $\geq \frac { 1 } { n } \left( \frac { n } { 16 e ( m + n ) } \right) ^ { n } \times \times \operatorname{min} _ { k _ { 1 } \leq l _ { 1 } \leq k \leq l _ { 2 } \leq k _ { 2 } } | b _ {l_{ 1} } + \ldots + b _ {l_{ 2 }} |.$ ; confidence 0.264

8. v0960306.png ; $\ddot { z } - \mu \left( z - \frac { \dot{z} \square ^ { 3 } } { 3 } \right) + z = 0,$ ; confidence 0.264

9. a12016073.png ; $\lambda c _ { 1 } + \lambda ^ { 2 } c _ { 1 } + \ldots$ ; confidence 0.264

10. f12021045.png ; $c _ { 1 } ( \lambda ) , \ldots , c _ { j - 1} ( \lambda )$ ; confidence 0.264

11. s09067036.png ; $u: M \supset U \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.264

12. t120200177.png ; $G _ { 1 } ( r ) = \sum _ { j = 1 } ^ { n } P _ { j } ( r ) z _ { j } ^ { r }$ ; confidence 0.264

13. n12010013.png ; $y _ { 1 } = y _ { 0 } + h \sum _ { i = 1 } ^ { s } b _ { i }\, f ( x _ { 0 } + c _ { i } h , g _ { i } ).$ ; confidence 0.263

14. c13009028.png ; $L_{i ,\, j}$ ; confidence 0.263

15. a11032022.png ; $A _ { i j } ( z ) = \sum _ { l = 0 } ^ { \rho _ { i } } R _ { l + 1 } ^ { ( i ) } ( c _ { i } z ) c _ { i } ^ { l + 1 } \lambda _ { l j } ^ { ( i ) },$ ; confidence 0.263

16. b13026022.png ; $\operatorname{deg}_{B}[f, \operatorname{int} K, 0]$ ; confidence 0.263

17. c13009017.png ; $\overline { c }_ 0 = \overline { c } _ { N } = 2$ ; confidence 0.263

18. l120170164.png ; $K ^ { n } \times 1$ ; confidence 0.263

19. v12002085.png ; $f ^ { * } : H ^ { q } ( Y , G ) \rightarrow H ^ { q } ( X , G )$ ; confidence 0.263

20. m13014078.png ; $d \overline { \zeta } [ k ] = d \overline { \zeta } _ { 1 } \wedge \ldots \wedge d \overline { \zeta } _ { k - 1 } \wedge d \overline { \zeta }_{ k + 1} \wedge \ldots \wedge d \overline { \zeta }_{n}$ ; confidence 0.263

21. m130260127.png ; $0 \rightarrow A \rightarrow X \stackrel { \pi } { \rightarrow } B \rightarrow 0.$ ; confidence 0.263

22. q1300404.png ; $f : G \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.262

23. t130140109.png ; $r_{i,\,j} = \operatorname { dim } _ { K } \operatorname { Ext } _ { R } ^ { 2 } ( S _ { j } , S _ { i } )$ ; confidence 0.262

24. c020280152.png ; $x \in K$ ; confidence 0.262

25. w13008019.png ; $y ^ { 2 } = R _ { g } ( \lambda )$ ; confidence 0.262

26. l057000153.png ; $\vdash ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262

27. w13007017.png ; $\rho ( h _ { i } ) = \frac { 1 } { 2 } a _ { i i }$ ; confidence 0.262

28. p130100106.png ; $\mathbf{C} ^ { n } \backslash K$ ; confidence 0.262

29. t120200243.png ; $* ( x ) - \text { li } x$ ; confidence 0.262

30. b13022080.png ; $x \in T$ ; confidence 0.262

31. b01681032.png ; $\mathbf{r}$ ; confidence 0.262

32. c12017023.png ; $\mathbf{R}[ x _ { 1 } , \dots , x _ { n } ]$ ; confidence 0.262

33. h120120160.png ; $\hat{\tau}$ ; confidence 0.262

34. t12020035.png ; $\operatorname { inf } _ { z _ { 1 } , \ldots , z _ { n } \in U } \operatorname { max } _ { k \in S } \frac { \operatorname { Re } g _ { 1 } ( k ) } { M _ { d } ( k ) }$ ; confidence 0.262

35. f1201701.png ; $G = \langle x _ { 1 } , \dots , x _ { n } : r = 1 \rangle$ ; confidence 0.261

36. d12019019.png ; $\operatorname{Dom} ( - \Delta_{\text{ Dir}} ) = H _ { 0 } ^ { 1 } ( \Omega ) \bigcap H ^ { 2 } ( \Omega ).$ ; confidence 0.261

37. t12021067.png ; $A ( C , q , z ) = ( 1 - z ) ^ { r } z ^ { n - r } t \left( M _ { C } ; \frac { 1 + ( q - 1 ) z } { 1 - z } , \frac { 1 } { z } \right),$ ; confidence 0.261

38. k1200809.png ; $p = \{ p _ { 0 } , \dots , p _ { m } \}$ ; confidence 0.261

39. w12001019.png ; $= \left\{ \begin{array} { l l } { \sum _ { - n \leq i \leq - 1 } f ( i ) g ( i + n ) , } & { n = - m > 0, } \\ { - \sum _ { n \leq i \leq - 1 } f ( i - n ) g ( i ) , } & { n = - m < 0, } \\ { 0 , } & { \left\{ \begin{array} { l } { n + m \neq 0, } \\ { n = m = 0. } \end{array} \right.} \end{array} \right.$ ; confidence 0.261

40. m06257041.png ; $V _ { k }$ ; confidence 0.261

41. f12011026.png ; $\varphi \in \mathcal{P}_{*}$ ; confidence 0.261

42. g13006099.png ; $K _ {i ,\, j } ( A ) : =$ ; confidence 0.261

43. a120160122.png ; $j ^ { \prime } = p _ { t + 1} , \ldots , p$ ; confidence 0.261

44. b12013037.png ; $L _ { a } ^ { 2 } ( G )$ ; confidence 0.261

45. c12021050.png ; $\{ \mathcal{L} _ { n } \}$ ; confidence 0.261

46. e12023050.png ; $f ( t ) = A ( \sigma _ { t } ) = \int _ { a } ^ { b } L ( x , y ( x ) + t z ( x ) , y ^ { \prime } ( x ) + t z ^ { \prime } ( x ) ) d x$ ; confidence 0.261

47. m12003030.png ; $\Delta _ { x }$ ; confidence 0.261

48. c120180276.png ; $\nabla ( \Theta \bigotimes \Phi ) = \nabla \Theta \bigotimes \Phi + \tau _ { p + 1 } ( \Theta \bigotimes \nabla \Phi ) \in$ ; confidence 0.260

49. l120120204.png ; $K _ { \text{tot }S }$ ; confidence 0.260

50. a1301301.png ; $\left\{ \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q _t = - \frac { 1 } { 2 } q _{x x} + q ^ { 2 } r, } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r _t = \frac { 1 } { 2 } r _{xx} - q r ^ { 2 }. } \end{array} \right.$ ; confidence 0.260

51. b1201201.png ; $M = M ^ { n }$ ; confidence 0.260

52. m12012058.png ; $e R C$ ; confidence 0.260

53. s13011026.png ; $\partial _ { n } \ldots \partial _ { 1 } \mathfrak { S } _ { w _ { n + 1 } } = \mathfrak { S } _ { w _ { n } }$ ; confidence 0.260

54. z13010064.png ; $\exists x ( \emptyset \in x \bigwedge \forall y ( y \in x \rightarrow y \bigcup \{ y \} \in x ) ).$ ; confidence 0.260

55. h13009037.png ; $g _ { 0 } , \ldots , g _ { n }$ ; confidence 0.260

56. a130180188.png ; $\mathsf{RCA}$ ; confidence 0.260

57. a01139032.png ; $\nu _ { i }$ ; confidence 0.260

58. b13022090.png ; $q_{l}$ ; confidence 0.260

59. s120340130.png ; $\mathcal{M} ( \tilde { x } _ { - } , \tilde { x } _ { + } )$ ; confidence 0.259

60. s120230141.png ; $( S _ { 1 } , \dots , S _ { r } ) \sim L _ { r } ^ { ( 1 ) } ( f , n _ { 1 } / 2 , \dots , n _ { r } / 2 )$ ; confidence 0.259

61. l05702032.png ; $A _ { l ^ n}$ ; confidence 0.259

62. a12022037.png ; $r _ { \text{ess} } ( T )$ ; confidence 0.259

63. a1201308.png ; $-$ ; confidence 0.259

64. v120020220.png ; $\delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( \widehat{t ^ { * }} \square ^ { - 1 } \beta _ { 3 } ),$ ; confidence 0.259

65. w12009096.png ; $\ldots \times \mathfrak { S } _ { \{ \lambda _ { 1 } + \ldots + \lambda _ { n - 1 } + 1 , \ldots , r \} },$ ; confidence 0.259

66. b110220222.png ; $\mathcal{MM} _ { \text{Q} }$ ; confidence 0.259

67. s13045060.png ; $\rho _ { S } = 12 \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } u v d C _ { X , Y } ( u , v ) - 3 =$ ; confidence 0.259

68. a11030015.png ; $( T V _{\leq n} , d ) \rightarrow C_{ *} \Omega X _ { n + 1}$ ; confidence 0.259

69. a12023083.png ; $d _ { q } ( \Omega ) = \operatorname { max } _ { \overline{\Omega} } | z ^ { q } |$ ; confidence 0.259

70. b12043067.png ; $\Psi ( x \bigotimes x ) = q ^ { 2 } x \bigotimes x,$ ; confidence 0.259

71. p13013028.png ; $\tilde { A } _ { 7 }$ ; confidence 0.259

72. p12012020.png ; $C_{abcd}$ ; confidence 0.258

73. w13009099.png ; $I _ { n } ( g ) = \int _ { [ 0,1 ] ^ { n } } g ( t _ { 1 } , \ldots , t _ { n } ) d B ( t _ { 1 } ) \ldots d B ( t _ { n } ),$ ; confidence 0.258

74. d0319508.png ; $g_{2}$ ; confidence 0.258

75. h13002078.png ; $( \alpha _ { 1 } , \alpha _ { 2 } \cup \gamma ^ { d } , \dots , \alpha _ { q } )$ ; confidence 0.258

76. f13009095.png ; $H _ { n } ^ { ( k ) } ( \mathbf{x} ) = F _ { n } ^ { ( k ) } ( x )$ ; confidence 0.258

77. f13005027.png ; $x _ { 0 } \notin \{ p _ { 1 } , \dots , p _ { m } \}$ ; confidence 0.258

78. a12012079.png ; $x _ { t } \geq A y _ { t + 1}$ ; confidence 0.258

79. g12004095.png ; $\operatorname{WF} _ { s } u \cap \Gamma = \emptyset$ ; confidence 0.258

80. i130030141.png ; $\operatorname{ind}_{\alpha} ( D _ { + } ) = \int _ { M } \hat { A } ( M ) \operatorname{Ch} ( E ) - \frac { \eta ( D _ { 0 } ) + h } { 2 }.$ ; confidence 0.258

81. f11016095.png ; $L ( n )$ ; confidence 0.258

82. l11004013.png ; $w _ { i } ( x _ { 1 } , \ldots , x _ { n } ) = e \text { for every } \ w_ { i } \in X,$ ; confidence 0.257

83. t130130113.png ; $\operatorname{Hom}_{K ^ { b } ( P _ { \Lambda } )} ( T , T [ i ] ) = 0$ ; confidence 0.257

84. c120180217.png ; $h \otimes k \in \mathsf{S} ^ { 2 } \mathcal{E} \otimes \mathsf{S} ^ { 2 } \mathcal{E}$ ; confidence 0.257

85. e12007071.png ; $p_{M}$ ; confidence 0.257

86. p12015027.png ; $r_1$ ; confidence 0.257

87. c13023010.png ; $L _ { - } \sim _ { c } L _ { - } ^ { \prime }$ ; confidence 0.257

88. g130040109.png ; $S ( \phi ) = \int \langle \xi ( x ) , \phi ( x ) \rangle \theta ( x ) d \mathcal{H} ^ { m } | _ { R ( x ) },$ ; confidence 0.257

89. d12016018.png ; $g _ { n } = \mathcal{M} _ { t }\, f _ { 2 n - 1}$ ; confidence 0.257

90. a130040189.png ; $\mathfrak{A}^{*S*S}$ ; confidence 0.257

91. e12014036.png ; $f v _ { 1 } , \dots , v _ { \rho ( f )}$ ; confidence 0.257

92. s0833607.png ; $P _ { n } ( z ) = \frac { 1 } { 2 \pi i } \int _ { C } \frac { ( t ^ { 2 } - 1 ) ^ { n } } { 2 ^ { n } ( t - z ) ^ { n + 1 } } d t,$ ; confidence 0.256

93. s12017065.png ; $\succsim_{i}$ ; confidence 0.256

94. a01148046.png ; $a_{0}$ ; confidence 0.256

95. a130040400.png ; $\operatorname{Mod} ^ { * S} \mathcal{D} = \mathbf{P} _ { \text{SD} } \operatorname{Mod} ^ { *\text{L}} \mathcal{D} $ ; confidence 0.256

96. d13006026.png ; $\operatorname{Bel}_{E _ { 1 }}$ ; confidence 0.256

97. d12029092.png ; $q_{ m}$ ; confidence 0.256

98. l13001011.png ; $\hat { f } ( k ) = ( 2 \pi ) ^ { - n } \int _ { \text{T} ^ { n } } f ( x ) e ^ { - i k x } d x$ ; confidence 0.256

99. p13013027.png ; $\tilde{A} _ { 6 }$ ; confidence 0.256

100. a01329044.png ; $\sum _ { n }$ ; confidence 0.256

101. c12030044.png ; $\mathcal{O} _ { N }$ ; confidence 0.255

102. b12029049.png ; $x \in V \subset U \subset X$ ; confidence 0.255

103. s12017055.png ; $x \succsim_{i} z$ ; confidence 0.255

104. b1302806.png ; $\mathcal{U}_{*}$ ; confidence 0.255

105. t130140174.png ; $q_{C}$ ; confidence 0.255

106. a130040531.png ; $\varphi _ { 0 } , \ldots , \varphi _ { n - 1} , \varphi _ { n }$ ; confidence 0.255

107. a13029020.png ; $\operatorname{HF} _ { * } ^ { \text{symp} } ( M , L _ { 0 } , L _ { 1 } )$ ; confidence 0.255

108. c026010520.png ; $\xi _ { k }$ ; confidence 0.255

109. g044270146.png ; $K _ { s }$ ; confidence 0.255

110. e12012098.png ; $( w _ { i } ^ { ( t + 1 ) } , \ldots , w _ { n } ^ { ( t + 1 ) } )$ ; confidence 0.255

111. z13002023.png ; $\underline { f } _ { + \text{ap } } = + \infty$ ; confidence 0.254

112. a1200803.png ; $\sum _ { i ,\, j = 1 } ^ { m } a _ { i ,\, j } ( x ) n _ { i } ( x ) \partial u / \partial x _ { j } = 0$ ; confidence 0.254

113. d031850339.png ; $( u _ { 1 } , \ldots , u _ { m } )$ ; confidence 0.254

114. f120110197.png ; $\tilde{Q}$ ; confidence 0.254

115. l13010033.png ; $f _ { s \text{l}t } ( x ) : = - \frac { 1 } { 4 \pi } \int _ { S ^ { 1 } } \hat { f } _ { p p } ( \alpha , \alpha \cdot x ) d \alpha,$ ; confidence 0.254

116. a130040241.png ; $\Gamma \vdash _ { \mathcal{D} } \varphi \text { iff } K ( \Gamma ) \approx L ( \Gamma ) \vDash _ { \text{K} } K ( \varphi ) \approx L ( \varphi ),$ ; confidence 0.254

117. k12013031.png ; $ i = 2$ ; confidence 0.254

118. c12016013.png ; $j = i :\, a _ { i i } = \sum _ { k = 1 } ^ { i } r _ { k i } ^ { 2 },$ ; confidence 0.254

119. s09008044.png ; $\tilde { W }$ ; confidence 0.254

120. l1300803.png ; $\operatorname{exp} ( h )$ ; confidence 0.253

121. f1202104.png ; $a ^ { [ n ] } ( z ) = \sum _ { i = 0 } ^ { \infty } a _ { i } ^ { n } z ^ { i }$ ; confidence 0.253

122. d03168030.png ; $y _ { n }$ ; confidence 0.253

123. b12032051.png ; $\mathbf{l}^{p}$ ; confidence 0.253

124. r13007064.png ; $\sum _ { i ,\, j = 1 } ^ { n } K ( x _ { i } , x _ { j } ) t _ { j } \overline { t } _ { i } \geq 0 ,\, \forall t \in \mathbf{C} ^ { n } ,\, \forall x _ { i } \in E,$ ; confidence 0.253

125. c12030053.png ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } < I$ ; confidence 0.253

126. c1202005.png ; $\alpha \wedge ( d \alpha ) ^ { n - 1 } \neq 0$ ; confidence 0.253

127. d03087012.png ; $e _ { \alpha }$ ; confidence 0.253

128. b11066035.png ; $\| H f \| _ { * } \leq G \| f \| _ { \infty }.$ ; confidence 0.253

129. a120260108.png ; $\hat { y } _ { i } \in \hat { A } [ [ X _ { 1 } , \dots , X _ { s _ { i } } ] ]$ ; confidence 0.253

130. b01660012.png ; $\mathbf{v}$ ; confidence 0.253

131. t120140166.png ; $H ^ { 2 } ( \mathbf{C} ^ { n } )$ ; confidence 0.253

132. d120020133.png ; $\hat{c}_{k}^{1} \leq 0$ ; confidence 0.252

133. a1302801.png ; $a = a_0$ ; confidence 0.252

134. n067520175.png ; $J = \left\| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { J ( e _ { i } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right\|.$ ; confidence 0.252

135. c02074095.png ; $p ^ { * }$ ; confidence 0.252

136. c12018061.png ; $P \in M$ ; confidence 0.252

137. b12052039.png ; $y = F ( x _ { + } ) - F ( x _ { c } )$ ; confidence 0.252

138. f1301704.png ; $A _ { 2 } ( G ) = \left\{ \overline { k } * \breve{ l } : k , l \in \mathcal{L} _ { C } ^ { 2 } ( G ) \right\}$ ; confidence 0.252

139. b13017039.png ; $\psi _ { t }$ ; confidence 0.252

140. t12020012.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k \in S } \frac { | \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k } | } { M _ { d } ( k ) },$ ; confidence 0.252

141. o130060105.png ; $\mathfrak { E } ( \lambda ) = \operatorname { ker } ( \lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \gamma ),$ ; confidence 0.252

142. b12021037.png ; $\hat{X}_i$ ; confidence 0.252

143. g04348025.png ; $S ^ { r - 1}$ ; confidence 0.252

144. p12017040.png ; $\hat { X } = X \oplus 0 \in \operatorname { ker } \delta _ { \hat{A} , B }$ ; confidence 0.252

145. v1300503.png ; $V ^ { \natural } = \oplus _ { n \geq - 1} V _ { n } ^ { \natural }$ ; confidence 0.251

146. s12005013.png ; $\gamma _ { n } = S _ { n } ( 0 )$ ; confidence 0.251

147. d13013035.png ; $\Psi _ { + } = e ^ { i e \chi / \hbar } \Psi _ { - } = e ^ { 2 i e g \phi / \hbar } \Psi _ { - },$ ; confidence 0.251

148. s1305006.png ; $\left( \begin{array} { l } { n } \\ { 0 } \end{array} \right) < \ldots < \left( \begin{array} { c } { n } \\ { \lfloor n / 2 \rfloor } \end{array} \right) = \left( \begin{array} { c } { n } \\ { \lceil n / 2 \rceil } \end{array} \right) > \ldots > \left( \begin{array} { l } { n } \\ { n } \end{array} \right),$ ; confidence 0.251

149. h13003046.png ; $qd$ ; confidence 0.251

150. a130240242.png ; $\text{SS} _ { \mathcal{H} } = \sum _ { i = 1 } ^ { q } z _ { i } ^ { 2 }$ ; confidence 0.251

151. b12037092.png ; $\sum _ { 1 } ^ { 1 }$ ; confidence 0.251

152. c12021036.png ; $P _ { m } ( A _ { m } ) \rightarrow 0$ ; confidence 0.251

153. k13001022.png ; $| s D |$ ; confidence 0.251

154. c13010044.png ; $(S) \int _ { A } f d m = \operatorname { sup } _ { \alpha \in [ 0 , + \infty ] } [ \alpha \bigwedge m ( A \bigcap F _ { \alpha } ) ],$ ; confidence 0.251

155. b110220104.png ; $H _ { \text{DR} } ^ { i } ( X_{ / \mathbf{R}} )$ ; confidence 0.251

156. s12034024.png ; $\operatorname{SH} ^ { * } ( M , \omega , \phi ) = \operatorname{SH} ^ { * } ( N , \tilde { \omega } , L _ { + } , L - )$ ; confidence 0.251

157. b12012012.png ; $v ^ { \perp }$ ; confidence 0.251

158. q120070134.png ; $\Delta t ^ { i } \square_{ j} = t ^ { i } \square _ { a } \bigotimes t ^ { a } \square_{ j} ,\, \epsilon t ^ { i } \square _j = \delta ^ { i } \square_ j$ ; confidence 0.251

159. a011800102.png ; $\text{NC}$ ; confidence 0.251

160. c026600118.png ; $x \in X _ { 0 }$ ; confidence 0.251

161. f12009023.png ; $\mathcal{H} ( \mathbf{C} ^ { n } )$ ; confidence 0.251

162. l11002056.png ; $a , b _ { 1 } , \dots , b _ { n }$ ; confidence 0.251

163. c021620383.png ; $\operatorname{ch}$ ; confidence 0.251

164. a01186049.png ; $\mathfrak{G}$ ; confidence 0.251

165. k05507051.png ; $\gamma _ { \omega }$ ; confidence 0.251

166. m12015065.png ; $\frac { 1 } { \beta _ { p } ( a , b ) } | U | ^ { a - ( p + 1 ) / 2 } | I _ { p } - U | ^ { b - ( p + 1 ) / 2 },$ ; confidence 0.250

167. t12021072.png ; $h _ { M } ( x )$ ; confidence 0.250

168. c11045030.png ; $A / N$ ; confidence 0.250

169. d03202028.png ; $l = n$ ; confidence 0.250

170. f120150182.png ; $\nu ( A ) = \operatorname { sup } _ { M } \text { inf } \{ \| A x \| : x \in M , \| x \| = 1 \}$ ; confidence 0.250

171. s13053068.png ; $\text{St} = \sum _ { P } \pm 1 _ { P } ^ { G },$ ; confidence 0.250

172. e1300107.png ; $f ^ { \rho } \in I : = ( f _ { 1 } , \dots , f _ { m} )$ ; confidence 0.250

173. d12018021.png ; $\partial \mathbf{D}$ ; confidence 0.250

174. b12037038.png ; $g_{k}$ ; confidence 0.250

175. n13003062.png ; $\hat { u } = ( L - \operatorname { Re } ( \lambda ) I ) ^ { - 1 } f$ ; confidence 0.250

176. a01212027.png ; $G_i$ ; confidence 0.250

177. n06752075.png ; $e _ { j } ^ { n _ { i j } }$ ; confidence 0.250

178. f1202307.png ; $[ K _ { 1 } , [ K _ { 2 } , K _ { 3 } ] ] = [ [ K _ { 1 } , K _ { 2 } ] , K _ { 3 } ] + ( - 1 ) ^ { k _ { 1 } k _ { 2 } } [ K _ { 2 } , [ K _ { 1 }, K _ { 3 }] ].$ ; confidence 0.250

179. a11030045.png ; $C _{*} \Omega g \circ \theta_{ X}$ ; confidence 0.250

180. a130040612.png ; $\mathfrak{M}$ ; confidence 0.250

181. e1300509.png ; $\sum _ { n \in Z } \frac { [ \lambda + \alpha ; n ] [ \mu - n + 1 ; n ] } { [ \mu - n + \beta ; n ] [ \lambda + 1 ; n ] } x ^ { \lambda + n } y ^ { \mu - n },$ ; confidence 0.249

182. a011650267.png ; $x _ { 1 } , \dots , x _ { k }$ ; confidence 0.249

183. e120020122.png ; $Y ^ { 1 }$ ; confidence 0.249

184. b01557039.png ; $\partial U$ ; confidence 0.249

185. t13004036.png ; $\mathbf{D} Q _ { n } ( x ) : = x ^ { n }$ ; confidence 0.249

186. b12024019.png ; $k _ { 1 } , \dots , k _ { n }$ ; confidence 0.249

187. a11030016.png ; $X _ { n + 1}$ ; confidence 0.249

188. p12017058.png ; $\delta _ { A , B } ( X ) \in \mathcal{N} _ { \epsilon } ^ { \prime } \Rightarrow \delta _ { A ^ { * } , B ^ { * } } ( X ) \in \mathcal{N}_ { \epsilon }$ ; confidence 0.249

189. g120040183.png ; $\mathcal{T} ^ { n } = \mathbf{R} ^ { n } / ( 2 \pi \mathbf{Z} ) ^ { n }$ ; confidence 0.249

190. g13001023.png ; $\{ \alpha , \alpha ^ { q } , \ldots , \alpha ^ { q ^ { n - 1 } } \}$ ; confidence 0.249

191. b12004055.png ; $q _ { X } = \operatorname { lim } _ { s \rightarrow 0 + } \frac { \operatorname { log } s } { \operatorname { log } \| D _ { s } \| _ { X } },$ ; confidence 0.248

192. f12010090.png ; $J = \left( \begin{array} { c c } { 0 } & { I _ { n } } \\ { - I _ { n } } & { 0 } \end{array} \right),$ ; confidence 0.248

193. b12042093.png ; $v$ ; confidence 0.248

194. d120020220.png ; $\overline{x} = \sum _ { k \in P ^ { \prime } } \overline { \lambda } _ { k } x ^ { ( k ) } + \sum _ { k \in R ^ { \prime } } \overline { \mu } _ { k } \tilde{x} ^ { ( k ) }$ ; confidence 0.248

195. h12012041.png ; $d ^ { \prime } _{X}$ ; confidence 0.248

196. b12002047.png ; $\| \beta _ { n , F } - \beta _ { n } \| = o \left( \frac { 1 } { n ^ { 1 / 2 - \varepsilon } } \right) \ \text{a.s.}\ .$ ; confidence 0.248

197. l12006043.png ; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle |^ { 2 } } { \lambda } d \lambda < E _ { 0 }.$ ; confidence 0.248

198. m12007053.png ; $P ( x _ { 1 } ^ { - 1 } , \ldots , x _ { n } ^ { - 1 } ) / P ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.248

199. d032150131.png ; $\tilde { U }$ ; confidence 0.248

200. o130010145.png ; $\rho \leq c _ { 1 } \left( \frac { \operatorname { ln } | \operatorname { ln } \delta | } { | \operatorname { ln } \delta | } \right) ^ { c _ { 2 } },$ ; confidence 0.248

201. b12015079.png ; $= \frac { 1 } { n ! } \sum _ { \pi \text { a permutation } } d ( x _ { \pi ( 1 )} , \ldots , x _ { \pi ( n )} ) ,\; ( x _ { 1 } , \ldots , x _ { n } ) \in \{ 0,1 \} ^ { n },$ ; confidence 0.248

202. n06663053.png ; $r_1 = \ldots r _ { n } = r$ ; confidence 0.247

203. c12007016.png ; $\left. + ( - 1 ) ^ { n + 1 } \operatorname { pr }_{ ( \alpha _ { 2 } , \dots , \alpha _ { n + 1 } ) }\right\}_{ ( \alpha _ { 1 } , \dots , \alpha _ { n + 1 } )}$ ; confidence 0.247

204. c120180386.png ; $\tilde { g }$ ; confidence 0.247

205. d120020103.png ; $\overline { q }$ ; confidence 0.247

206. a1301308.png ; $\operatorname{sl} _ { 2 }$ ; confidence 0.247

207. o13006053.png ; $\tilde { \gamma } ^ { \prime } = \gamma ^ { \prime \prime }$ ; confidence 0.247

208. b13029023.png ; $\text{l} _ { A } ( M / \text{q}M ) = e _ { \text{q} } ^ { 0 } ( M )$ ; confidence 0.247

209. j13004037.png ; $\#$ ; confidence 0.246

210. c120010154.png ; $f ( z ) = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \partial \Omega } \frac { f ( \zeta ) s \wedge ( \overline { \partial } s ) ^ { n - 1 } } { \langle \zeta - z , s \rangle ^ { n } } ,\; z \in E.$ ; confidence 0.246

211. w1200204.png ; $\operatorname {l} _ { 1 } ( P , Q ) = \operatorname { inf } \{ \mathsf{E} d ( X , Y ) \}$ ; confidence 0.246

212. q12001093.png ; $\tilde{\pi} ^ { c }$ ; confidence 0.246

213. a130040526.png ; $\operatorname {Co} _ { \text{Alg} \operatorname {FMod} ^ { * \text{L}} \mathcal{ D }} \mathbf{A}$ ; confidence 0.246

214. q12003022.png ; $X\cdot f = ( \langle X , \cdot \rangle \otimes \operatorname {id} _ { A } ) L ( f )$ ; confidence 0.246

215. l1300602.png ; $z _ { i + 1} \equiv a z _ { i } + r ( \operatorname { mod } m ) ,\, 0 \leq z _ { i } < m,$ ; confidence 0.246

216. f12023012.png ; $+ ( - 1 ) ^ { k } \left( d \varphi \bigwedge i _ { X } \psi \bigotimes Y + i _{Y} \varphi \bigwedge d \psi \bigotimes X \right),$ ; confidence 0.246

217. j12002024.png ; $\varphi _ { I } = \int _ { I } \varphi d \vartheta / | I |$ ; confidence 0.246

218. d120280126.png ; $g \in H ^ { n ,\, n - 1 } ( \mathbf{C} ^ { n } \backslash D )$ ; confidence 0.246

219. s12024012.png ; $\operatorname {Cl} _ { i = 1 } ^ { \infty } ( X _ { i } , x _ { i_0 } ) = ( X , x _ { 0 } )$ ; confidence 0.246

220. a12018058.png ; $( S _ { n + 1} )$ ; confidence 0.246

221. b12042014.png ; $\Psi : \otimes \rightarrow \otimes ^ { \text{ op} }$ ; confidence 0.245

222. t13009019.png ; $\pi _X \circ \pi_ Y ( a ) = \pi_ X ( a )$ ; confidence 0.245

223. k05508019.png ; $w _ { 0 } \in \mathbf{C} ^ { n }$ ; confidence 0.245

224. t130140116.png ; $q_{ R}$ ; confidence 0.245

225. f12024064.png ; $t_0 \in \mathbf{R}$ ; confidence 0.245

226. f120110118.png ; $\mathcal{S} ^ { \prime } ( D ^ { n } ) \subset \mathcal{D} ^ { \prime } ( \mathbf{R} ^ { n } )$ ; confidence 0.245

227. s13049042.png ; $\nabla ( \mathcal{A} ) : = \{ q \in N _ { k + 1} : q > p \ \text { for some } p \in \mathcal{A} \}$ ; confidence 0.244

228. t120050116.png ; $x \in \Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( f )$ ; confidence 0.244

229. m11011042.png ; $= \left[ ( - 1 ) ^ { p - m - n } \prod _ { j = 1 } ^ { p } \left( x \frac { d } { d x } - a _j + 1 \right) \prod _ { j = 1 } ^ { q } \left( x \frac { d } { d x } - b _ { j } \right) \right].$ ; confidence 0.244

230. l1202005.png ; $A _ { 1 } , \dots , A _ { m } \subset S ^ { n }$ ; confidence 0.244

231. d11022036.png ; $y ^ { ( i ) } ( x _ { j } ) = a_{ij}$ ; confidence 0.244

232. c12031052.png ; $e ^ { \operatorname { ran } } ( Q _ { n } , F _ { d } ) = \operatorname { sup } \{ \mathsf{E} ( | I _ { d } ( f ) - Q _ { n } ( f ) | ) : f \in F _ { d } \},$ ; confidence 0.244

233. l11003074.png ; $\dot{\varphi}$ ; confidence 0.244

234. a120160100.png ; $z_{i j }$ ; confidence 0.244

235. i13009094.png ; $r , s , l _ { i } , t , m_ { j } \in \mathbf{Z}_{ \geq 0}$ ; confidence 0.243

236. r13004073.png ; $\frac { \lambda _ { 2 } ( \Omega ) } { \lambda _ { 1 } ( \Omega ) } \leq \frac { j _ { n / 2,1 } ^ { 2 } } { j _ { n / 2 - 1,1 } ^ { 2 } },$ ; confidence 0.243

237. c02028055.png ; $L ^ { * }$ ; confidence 0.243

238. b12043041.png ; $\varepsilon x = 0 , S x = - x$ ; confidence 0.243

239. b13004018.png ; $\cap _ { n = 0 } ^ { \infty } I _ {n}$ ; confidence 0.243

240. s120320128.png ; $\operatorname { ev } _ { x } ( \varphi ^ { * } ( a ) ) = \operatorname { ev } _ { \varphi _ { 0 } ( x ) } ( a )$ ; confidence 0.243

241. s120340158.png ; $\alpha _ { H } ( \tilde{y} ) - \alpha _ { H } ( \tilde { x } )$ ; confidence 0.243

242. b13009033.png ; $\widehat{\square}$ ; confidence 0.243

243. s13059053.png ; $\frac { d \psi ( t ) } { d t } = \frac { q ^ { 1 / 2 } } { 2 \kappa \sqrt { \pi } } e ^ { - ( \operatorname { ln } t / 2 \kappa ) ^ { 2 } } ,\, q = e ^ { - 2 \kappa ^ { 2 } }.$ ; confidence 0.242

244. t12002010.png ; $\mathsf{P} = \prod _ { x \in \mathbf{Z} } \mu _ { x }$ ; confidence 0.242

245. t13015018.png ; $0 \rightarrow \mathcal{K} ( H ^ { 2 } ( \mathbf{T} ) ) \triangleleft \mathcal{T} ( \mathbf{T} ) \rightarrow \mathcal{C} ( \mathbf{T} ) \rightarrow 0$ ; confidence 0.242

246. m12016067.png ; $\overset{\rightharpoonup} { f n n m e } ( U ^ { \prime } )$ ; confidence 0.242

247. b120310102.png ; $\| S _ { R } ^ { \delta }\, f - f \| _ { 1 } \rightarrow 0$ ; confidence 0.242

248. v11005022.png ; $H ^ { 1 } ( \mathbf{R} ^ { n } )$ ; confidence 0.242

249. f11016033.png ; $( \mathfrak{A} b _ { 1 } \dots b _ { t } )$ ; confidence 0.242

250. b110220192.png ; $F ^ { m } H _ { \text{DR} } ^ { 2 m - 1 } ( X_{ / \mathbf{R}} ) \overset{\sim} {\rightarrow} H _ { \text{B} } ^ { 2 m - 1 } ( X _{ / \mathbf{R}} , \mathbf{R} ( m - 1 ) ),$ ; confidence 0.242

251. b110220174.png ; $\operatorname{CH} ^ { m } ( X ) \rightarrow H _ { \text{B} } ^ { 2 m } ( X _ { \text{C} } , \mathbf{Z} ( m ) )$ ; confidence 0.242

252. l12009069.png ; $TM \times \mathfrak{g}$ ; confidence 0.242

253. l13006074.png ; $z _ { i } \equiv a _ { i } z _ { i - 1 } + \ldots + a _ { i } z _ { i - r } ( \operatorname { mod } p )$ ; confidence 0.242

254. a12027081.png ; $r _ { P } ( a \cdot b ) = r _ { P } ( a ) \cdot r _ { P } ( b ) \cdot ( a , b ) _ { P }.$ ; confidence 0.24

255. c12008099.png ; $T _ { 00 } = I _ { n }$ ; confidence 0.242

256. a12028016.png ; $U _ { z }$ ; confidence 0.242

257. c02292065.png ; $c_{3}$ ; confidence 0.242

258. c0228508.png ; $N_{2}$ ; confidence 0.242

259. m13001033.png ; $v _ { \operatorname {MAP} } = \operatorname { arg } \operatorname { max } _ { v _ { j } \in \mathcal{V} } \prod _ { i } \mathsf{P} ( a _ { i } | v _ { j } ) \cdot \mathsf{P} ( v _ { j } ) .$ ; confidence 0.242

260. i13004023.png ; $\| d \| _ { a _ { p } } = \sum _ { n = 0 } ^ { \infty } 2 ^ { n / p ^ { \prime } } \left\{ \sum _ { k = 2 ^ { n } } ^ { 2 ^ { n + 1 } - 1 } | \Delta d _ { k } | ^ { p } \right\} ^ { 1 / p } < \infty .$ ; confidence 0.241

261. c120080107.png ; $u _ { ij } \in \mathbf{R} ^ { m }$ ; confidence 0.241

262. a130040227.png ; $\Gamma \approx \Delta \models _ { \text{K} } \varphi \approx \psi \text { iff } E ( \Gamma , \Delta ) \vdash _ { \mathcal{D} } E ( \varphi , \psi ),$ ; confidence 0.241

263. t12021078.png ; $t ( M ; x , y ) = \sum _ { S \subseteq E } \left( \prod _ { e \in S } p ( e ) \right) \left( \prod _ { e \notin S } ( 1 - p ( e ) ) \right)\times $ ; confidence 0.241

264. q12008085.png ; $\mathsf{E} [ W ]_{ \text{PS}}$ ; confidence 0.241

265. a13004050.png ; $\mathfrak { A } = \langle \text{A} , F \rangle$ ; confidence 0.241

266. b12051092.png ; $d = d - \alpha y _ { n - 1}$ ; confidence 0.241

267. j130040137.png ; $M ^ { ( k ) }$ ; confidence 0.241

268. t12005090.png ; $\mu _ { i _ { 1 } , \ldots , i _ { s } }$ ; confidence 0.241

269. b11022054.png ; $\operatorname { ch } _ { \mathcal{M} } : K _ { i } ( X ) \rightarrow \oplus H ^ { 2 j - i _ { \mathcal{M} }} ( X , \mathbf{Q} ( j ) ) $ ; confidence 0.241

270. b13021027.png ; $C _ { r } < C _ { s }$ ; confidence 0.240

271. f12024076.png ; $x ( t_0 )$ ; confidence 0.240

272. d120230138.png ; $n r$ ; confidence 0.240

273. r13005047.png ; $C _ { A } ( g ) = \{ a \in A : a ^ { g } = a \} = \{ 1 \}$ ; confidence 0.240

274. c02719017.png ; $\mathbf{Z} ^ { n }$ ; confidence 0.240

275. t12005012.png ; $\Sigma ^ { i } ( f ) = \{ x \in V : \operatorname { dim } \operatorname { Ker } d f _ { x } = i \}.$ ; confidence 0.240

276. a12023063.png ; $b _ { q , s } = \int _{\Omega} z ^{q} \overline{z} ^ { s } d v$ ; confidence 0.240

277. i13001052.png ; $\overline { d } _ { ( 1 ^ { n } ) } \preceq \overline { d } _ { ( 2,1 ^ { n - 2 } ) } \preceq \ldots \preceq \overline { d } _ { ( k , 1 ^ { n - k } ) } \preceq \ldots \preceq \overline { d } _ { ( n ) }.$ ; confidence 0.240

278. a13013045.png ; $= \frac { 1 } { 2 } \operatorname { Tr } \left( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - r } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r } \right)$ ; confidence 0.240

279. f11016039.png ; $c _ { n + i}$ ; confidence 0.240

280. b11042028.png ; $s \in \mathbf{R}$ ; confidence 0.240

281. i130090154.png ; $\overline{\mathbf{Q}}$ ; confidence 0.240

282. b12046045.png ; $\chi _ { e }$ ; confidence 0.240

283. m13014070.png ; $D = ( \partial / \partial x _ { 1 } , \dots , \partial / \partial x _ { n } )$ ; confidence 0.240

284. e12009014.png ; $S ^ { \sigma } = ( \rho , J / c )$ ; confidence 0.240

285. t13013040.png ; $\Gamma = \operatorname { End } _ { \Lambda } ( T ) ^ { \text{ op} }$ ; confidence 0.240

286. b110220108.png ; $\rightarrow H _ { \mathcal{D} } ^ { i + 1 } ( X_{ / \mathbf{R}} , \mathbf{R} ( i + 1 - m ) ) \rightarrow 0.$ ; confidence 0.240

287. i1300107.png ; $d _ { \chi } ^ { G } ( A ) : = \sum _ { \sigma \in G } \chi ( \sigma ) \prod _ { i = 1 } ^ { n } a _ {i \sigma ( i ) }.$ ; confidence 0.240

288. b120430173.png ; $\Delta f = 1 \bigotimes f + x \bigotimes \partial _ { q , x } \,f + y \bigotimes \partial _ { q , y } \,f +\dots ,$ ; confidence 0.239

289. h13007016.png ; $\mathbf{f} = ( f _ { 1 } , \dots , f _ { l } ) \in R ^ { l }$ ; confidence 0.239

290. h12007021.png ; $a \circ_{h} b$ ; confidence 0.239

291. d12026018.png ; $C_{ [ 0,1 ]}$ ; confidence 0.239

292. o130060112.png ; $l _ { \mathcal{E} } - i \Phi ( \xi _ { 1 } A _ { 1 } + \xi _ { 2 } A _ { 2 } - \xi _ { 1 } \lambda _ { 1 } - \xi _ { 2 } \lambda _ { 2 } ) ^ { - 1 } \Phi ^ { * } ( \xi _ { 1 } \sigma _ { 1 } + \xi _ { 2 } \sigma _ { 2 } ),$ ; confidence 0.239

293. s13059032.png ; $Q _ { 2 n } ( z ) = \frac { 1 } { H _ { 2 n } ^ { ( - 2 n ) } } \left| \begin{array} { c c c c } { c _ { - 2 n } } & { \cdots } & { c _ { - 1 } } & { z ^ { - n } } \\ { \vdots } & { \square } & { \vdots } & { \vdots } \\ { c _ { - 1 } } & { \cdots } & { c _ { 2 n - 2 } } & { z ^ { n - 1 } } \\ { c_0 } & { \cdots } & { c _ { 2 n - 1 } } & { z ^ { n } e n d } \end{array} \right|,$ ; confidence 0.239

294. a130240527.png ; $\Theta$ ; confidence 0.239

295. q12007016.png ; $H ^ { \otimes 3 }$ ; confidence 0.239

296. q1200205.png ; $| T _ { i _ { 1 } , \ldots , i _ { k } } ^ { 1 , \ldots , k } | _ { q }$ ; confidence 0.239

297. l120120207.png ; $\alpha _ { 0 } : \cup _ { \text { p } ^ { \prime } \in S ^ { \prime } } G ( K _ { \text { p } ^ { \prime } } ) \rightarrow G$ ; confidence 0.239

298. a13002011.png ; $\nu _ { n } = \sum _ { k = 0 } ^ { n - 1 } \mu _ { k } / n$ ; confidence 0.239

299. d03386039.png ; $I _ { A }$ ; confidence 0.239

300. g12007035.png ; $i ^ { * }$ ; confidence 0.238

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/70. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/70&oldid=49859