Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/NoNroff/66

From Encyclopedia of Mathematics
Jump to: navigation, search

List

1. t120140134.png ; $\operatorname { dist } _ { \lambda } ( \phi , \psi ) = \operatorname { limsup } _ { \zeta \rightarrow \lambda } | \phi ( \zeta ) - \psi ( \zeta ) |.$ ; confidence 0.354

2. t12021059.png ; $\operatorname{GF} ( q ) ^ { n }$ ; confidence 0.354

3. a0104606.png ; $a \in D$ ; confidence 0.354

4. a13013088.png ; $\hat{L}$ ; confidence 0.354

5. t13008016.png ; $V _ { n } = 0$ ; confidence 0.354

6. c120180279.png ; $\Phi \in \otimes ^ { q} \mathcal{E}$ ; confidence 0.354

7. a0120608.png ; $\alpha = ( \alpha _ { 1 } , \dots , \alpha _ { m } )$ ; confidence 0.354

8. a13023029.png ; $\operatorname{l} = 1,2 , \ldots$ ; confidence 0.354

9. b1205104.png ; $f ( x ^ { * } ) \leq f ( x ) \text { for all } x \text{ near } x ^ { * };$ ; confidence 0.354

10. b120320108.png ; $c_0 ( \Gamma )$ ; confidence 0.354

11. a12020043.png ; $\mathfrak { p } _ { i } ( t ) = q _ { i } ( t ) \prod _ { m = 1 , m \neq i } ^ { n } ( t - t _ { m } ) ^ { r _ { m } } \quad ( i = 1 , \ldots , n ).$ ; confidence 0.353

12. b12017050.png ; $W _ { \alpha } ^ { p }$ ; confidence 0.353

13. d120280150.png ; $z \in \mathbf{C} ^ { n } \backslash \overline { D } _ { m }$ ; confidence 0.353

14. s12020047.png ; $\sigma \in S _ { n }$ ; confidence 0.353

15. b13002063.png ; $\operatorname{JB} ^ { * }$ ; confidence 0.353

16. l12004012.png ; $I _ { i } = [ x _ { i - 1 / 2} , x _ { i + 1 / 2 } ]$ ; confidence 0.353

17. a12013031.png ; $( X _ { n - 1 } , \theta _ { n - 1 } , \ldots )$ ; confidence 0.353

18. m12011051.png ; $H_{ *} ( \overline { M } ) = H_{ *} ( F )$ ; confidence 0.353

19. l12004077.png ; $\hat { f } _ { i } ^ { + } = f ( \hat { u } _ { i } ^ { + } )$ ; confidence 0.353

20. m12007049.png ; $c_0 > 0$ ; confidence 0.353

21. v1300602.png ; $\mathbf{C} [ y _ { 1 / 2} , y _ { 3 / 2} , \dots ]$ ; confidence 0.353

22. s1301104.png ; $H ^ { * } ( F\operatorname{l} _ { n } , \mathbf{Z} ) \simeq \mathbf{Z} [ x _ { 1 } , \dots , x _ { n } ] / \mathbf{Z} ^ { + } [ x _ { 1 } , \dots , x _ { n } ] ^ { \mathcal{S} _ { n } }.$ ; confidence 0.353

23. m1300605.png ; $a _ { 1 } f _ { 1 } + \ldots + a _ { m } f _ { m } = 1,$ ; confidence 0.353

24. l120170124.png ; $K ^ { 2 } \times I \searrow L ^ { 2 }$ ; confidence 0.353

25. c13019036.png ; $N / L$ ; confidence 0.353

26. e12015032.png ; $x ^ { r }$ ; confidence 0.352

27. t120200190.png ; $\kappa \leq | \operatorname { arc } z _ { j } | < \pi$ ; confidence 0.352

28. a1301303.png ; $P _ { 1 } = \left( \begin{array} { c c c } { 0 } & { \square } & { q } \\ { r } & { \square } & { 0 } \end{array} \right) , Q _ { 2 } = \left( \begin{array} { c c } { - \frac { i } { 2 } q r } & { \frac { i } { 2 } q_x } \\ { - \frac { i } { 2 } r _ { x } } & { \frac { i } { 2 } q r } \end{array} \right).$ ; confidence 0.352

29. n12011047.png ; $\xi _ { \underline{x}^*} : \mathbf{R} ^ { n } \rightarrow [ 0,1 ]$ ; confidence 0.352

30. f120210103.png ; $= [ \sum _ { i = 0 } ^ { \infty } \sum _ { n = 0 } ^ { N } a _ { i } ^ { n } z ^ { n + i } ( \frac { \partial } { \partial z } ) ^ { n } ] [ \sum _ { k = 0 } ^ { \infty } c _ { k } ( \lambda ) z ^ { \lambda + k } ] =$ ; confidence 0.352

31. k12013016.png ; $Q _ { 2 n+1} $ ; confidence 0.352

32. a130040288.png ; $\operatorname{Co}\mathbf{A}$ ; confidence 0.351

33. n067520212.png ; $G = \operatorname{GL} _ { m } ( K ) \times \operatorname{GL} _ { n } ( K )$ ; confidence 0.351

34. w13009090.png ; $\widetilde{( \iota ^ { - 1 } g )}$ ; confidence 0.351

35. t12005092.png ; $\left\{ \begin{array} { l } { j _ { 1 } \geq \ldots \geq j _ { s }; } \\ { i _ { s } \geq j _ { s } \geq 0 \quad \forall s , 1 \leq s \leq r, } \\ { j _ { 1 } > 0 .} \end{array} \right.$ ; confidence 0.351

36. r13014025.png ; $\operatorname { lim } _ { n \rightarrow \infty } \{ \operatorname { inf } _ { C } \| R ^ { n } - C \| ^ { 1 / n } \} = 0,$ ; confidence 0.351

37. w12005059.png ; $f : \mathbf{R} ^ { m } \rightarrow \mathbf{R} ^ { k }$ ; confidence 0.351

38. d03011027.png ; $L ^ { + }$ ; confidence 0.351

39. c120180183.png ; $\mathsf{A} ^ { 2 } \mathcal{E} \subset \otimes ^ { 2 } \mathcal{E}$ ; confidence 0.351

40. k12005020.png ; $\mu_* ^ {- 1 } B _ { j }$ ; confidence 0.351

41. b13023038.png ; $T _ { u }$ ; confidence 0.351

42. b01501039.png ; $\mathbf{R} ^ { n + r }$ ; confidence 0.351

43. b11033014.png ; $\omega _ { i }$ ; confidence 0.351

44. l12003023.png ; $\mathcal{S} \operatorname{q} ^ { n } x _ { n } = x _ { n } ^ { 2 }$ ; confidence 0.350

45. c1301107.png ; $f ( y ) - f ( x ) + \sigma \| y - x \| ^ { 2 } \geq \langle \zeta , y - x \rangle, \ \forall y \text{ near } x.$ ; confidence 0.350

46. l06105053.png ; $\operatorname{mes}( E ) < \delta \Rightarrow \operatorname { mes } ( f ( E ) ) < \epsilon.$ ; confidence 0.350

47. m12016058.png ; $\mathbf{R} ^ { p_1 n_1 } $ ; confidence 0.350

48. j120020111.png ; $\mathsf{P} [ X ^ { * } > \lambda ] \leq C e ^ { - \lambda / e }$ ; confidence 0.350

49. a12020082.png ; $J$ ; confidence 0.350

50. s13049036.png ; $\sum _ { k = 0 } ^ { r ( P ) } \frac { | \mathcal{F} \cap N _ { k } | } { | N _ { k } | } \leq 1$ ; confidence 0.350

51. l12019030.png ; $x = \operatorname { col } ( x _ { 1 } \ldots x _ { n } )$ ; confidence 0.350

52. g13003060.png ; $\mathcal{A}( \Omega ) = \mathcal{B} / \mathcal{I}_{ 0 , \operatorname { loc }}$ ; confidence 0.350

53. k13002072.png ; $q = \frac { n_1 - n_2 } { n_1 + n_2 }.$ ; confidence 0.350

54. d032600120.png ; $| I |$ ; confidence 0.350

55. b01566023.png ; $\tau_1$ ; confidence 0.350

56. l13006063.png ; $m _ { i - 1 } = a _ { i - 1 } m _ { i } + m _ { i + 1 } , i = 1,2 , \dots ,$ ; confidence 0.350

57. t120200218.png ; $\operatorname { min } _ { r = m + 1 , \ldots , m + K } | G _ { 1 } ( r ) | \geq \frac { 1 } { P _ { m , K } } \left| \sum _ { j = 1 } ^ { n } P _ { j } ( 0 ) \right|$ ; confidence 0.350

58. i13004025.png ; $\sum _ { n = 0 } ^ { \infty } \left\{ \sum _ { m = 1 } ^ { \infty } \left[ \sum _ { k = m 2 ^ { n } } ^ { ( m + 1 ) 2 ^ { n } - 1 } | \Delta d _ { k } | \right] ^ { 2 } \right\} ^ { 1 / 2 } < \infty.$ ; confidence 0.350

59. s12032067.png ; $\Pi ( M ) _ { \overline{0}} = M _ { \overline{\text{l}} }$ ; confidence 0.349

60. d1200708.png ; $u \in E$ ; confidence 0.349

61. k1300703.png ; $u = h _ { x }$ ; confidence 0.349

62. c13005039.png ; $\mathcal{N} _ { \operatorname{Aut} \Gamma } ( G ) = G . \operatorname { Aut } ( G , S ),$ ; confidence 0.349

63. t1200501.png ; $f : V ^ { n } \rightarrow W ^ { p }$ ; confidence 0.349

64. f12019064.png ; $\# \Omega \geq 2$ ; confidence 0.349

65. c120180404.png ; $A ( \tilde{g} ) = 0 \in \mathsf{S} ^ { 2 } \tilde{\mathcal{E}}$ ; confidence 0.349

66. r13008057.png ; $f ( z , z_0 ) = \frac { 1 } { K _ { D } ( z_0 , z _ { 0 } ) } \int _ { z _ { 0 } } ^ { z } K _ { D } ( t , z _ { 0 } ) d t.$ ; confidence 0.349

67. c13010022.png ; $( C ) \int _ { X } f d m = \sum _ { i = 1 } ^ { n } ( a _ { i } - a _ { i - 1 } ) m ( B _ { i } ),$ ; confidence 0.349

68. a1106004.png ; $F _ { n }$ ; confidence 0.349

69. h13002015.png ; $w _ { i } ^ { 1 } = \ldots = w _ { i } ^ { q }$ ; confidence 0.349

70. t120200148.png ; $ k \in [ m + 1 , m + n ]$ ; confidence 0.349

71. i13001026.png ; $\operatorname{id}$ ; confidence 0.349

72. s13013024.png ; $U _ { L }$ ; confidence 0.348

73. f13024016.png ; $a,b \in U ( \varepsilon )$ ; confidence 0.348

74. k05507046.png ; $\omega = \sum g _ { \alpha \overline{\beta} } d z ^ { \alpha } \wedge d \overline{z} \square ^ { \beta }$ ; confidence 0.348

75. x12002032.png ; $0 \neq I _ { \delta } \triangleleft R$ ; confidence 0.348

76. h13002048.png ; $( \alpha _ { 1 } , \alpha _ { 2 } \cup \gamma , \ldots , \alpha _ { q } ) , \ldots ,$ ; confidence 0.348

77. f120150171.png ; $\| T \| < \mu ( A )$ ; confidence 0.348

78. d03025021.png ; $f ( x , u_1 , \ldots , u _ { n } )$ ; confidence 0.348

79. a12020046.png ; $r_i$ ; confidence 0.348

80. a110380105.png ; $x _ { 1 } , \ldots , x _ { n }$ ; confidence 0.348

81. d1301108.png ; $H = c \frac { \hbar } { i } \overset{\rightharpoonup} { \alpha } . \overset{\rightharpoonup} { \nabla } + \overset{\rightharpoonup} { \beta } m _ { 0 } c ^ { 2 }.$ ; confidence 0.348

82. a01329042.png ; $n _ { 1 } , \ldots , n _ { k }$ ; confidence 0.348

83. c13021011.png ; $( a * b ) * ( c * d ) = ( a * c ) * ( b * d )$ ; confidence 0.348

84. a11016016.png ; $x ^ { * }$ ; confidence 0.348

85. c12026043.png ; $\| \mathbf{U }^ { n } - \mathbf{u} ^ { n } \| \leq \| \mathbf{U} ^ { 0 } - \mathbf{u} ^ { 0 } \| + O ( h ^ { 2 } + k ^ { 2 } ),$ ; confidence 0.348

86. b13026048.png ; $F : \overline { U } \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.348

87. b12014024.png ; $S_i \in \mathbf{F} _ { q }$ ; confidence 0.348

88. r1300406.png ; $u=0 \text{ on the boundary of } \Omega.$ ; confidence 0.347

89. c12031010.png ; $e ( Q _ { n } , F _ { d } ) = \operatorname { sup } \{ | I _ { d } ( f ) - Q _ { n } ( f ) | : f \in F _ { d } \}$ ; confidence 0.347

90. m1302006.png ; $H _ { f } = P ( d f ) \in \mathfrak{X} ( M , P )$ ; confidence 0.347

91. d120230127.png ; $R = \left( \begin{array} { l l } { R _ { 11 } } & { R _ { 12 } } \\ { R _ { 21 } } & { R _ { 22 } } \end{array} \right), F = \left( \begin{array} { l l } { F _ { 1 } } & { 0 } \\ { F _ { 2 } } & { F _ { 3 } } \end{array} \right),$ ; confidence 0.347

92. h13007061.png ; $\mathbf{f} \in R ^ { l }$ ; confidence 0.347

93. c0230307.png ; $\Psi_1$ ; confidence 0.347

94. i13004036.png ; $\operatorname { sup } _ { 0 < | y | < \pi } \left| \int _ { - \infty } ^ { \infty } \varphi ( x ) e ^ { - i y x } d x - \sum _ { - \infty } ^ { \infty } \varphi ( k ) e ^ { - i k x } \right| \leq C \| \varphi \| _ { \operatorname{BV} },$ ; confidence 0.347

95. a01020036.png ; $N$ ; confidence 0.347

96. d12002097.png ; $\hat{c} ^ { 1_k } $ ; confidence 0.347

97. n067520300.png ; $A _ { \alpha } \simeq K _ { \rho _ { \alpha } }$ ; confidence 0.347

98. c12026081.png ; $\frac { U _ { h } ^ { n + 1 } - U _ { h } ^ { n } } { k } = \frac { 1 } { 2 } F _ { h } ( t _ { n } , U _ { h } ^ { n } ) + \frac { 1 } { 2 } F _ { h } ( t _ { n +1 } , U _ { h } ^ { n + 1 } ),$ ; confidence 0.347

99. a13029012.png ; $\operatorname{HF} _ { * } ^ { \operatorname{inst} } ( Y , P _ { Y } )$ ; confidence 0.347

100. f12021032.png ; $c _ { 0 } \equiv 1$ ; confidence 0.347

101. c120210147.png ; $\alpha _ { n } / \tau _ { n } = O ( 1 )$ ; confidence 0.347

102. d12023077.png ; $R ^ { - \# } = \tilde{I} R ^ { - 1 } \tilde{I}$ ; confidence 0.347

103. i13009047.png ; $\operatorname{ rank }_Z E _ { 1 } ( k ) = \operatorname { rank } _ { Z p } \overline{E} _ { 1 } ( k )$ ; confidence 0.346

104. b12052034.png ; $B _ { c }$ ; confidence 0.346

105. s13004041.png ; $X_r ^ { * }$ ; confidence 0.346

106. z130100111.png ; $\forall x ( ( \neg x = \emptyset ) \rightarrow \exists y ( y \in x \bigwedge \forall z ( z \in x \rightarrow \neg z \in y ) ) ).$ ; confidence 0.346

107. a130050160.png ; $\sum _ { n = 0 } ^ { \infty } G ^ { \# } ( n ) y ^ { n } = \prod _ { m = 1 } ^ { \infty } ( 1 - y ^ { m } ) ^ { - P ^ { \# } ( m ) };$ ; confidence 0.346

108. v13007024.png ; $\phi _ { \operatorname{int} } = \phi _ { 0 } + \frac { \gamma b ^ { 2 } \kappa } { 12 \mu }.$ ; confidence 0.346

109. b1301504.png ; $\partial _ { t } \overline{z( \Gamma , t )} = ( 2 \pi i ) ^ { - 1 } \operatorname{PV} \int _ { - \infty } ^ { \infty } \frac { d \Gamma ^ { \prime } } { z ( \Gamma , t ) - z ( \Gamma ^ { \prime } , t ) }.$ ; confidence 0.346

110. h120020166.png ; $\mathfrak{S}_p$ ; confidence 0.346

111. y12002014.png ; $\mathcal{L} ( A ) = \int _ { M } \langle F _ { A } \wedge * F _ { A } \rangle$ ; confidence 0.346

112. g04537029.png ; $z \in \mathbf{C} ^ { n }$ ; confidence 0.346

113. a12015024.png ; $( \operatorname{ad} X ) ( Y ) = [ X , Y ] , X , Y \in \mathfrak { g },$ ; confidence 0.346

114. n06663013.png ; $r _ { i } = r _ { i } ^ { * } + \alpha _ { i }$ ; confidence 0.346

115. s130510116.png ; $K = L$ ; confidence 0.346

116. b130200167.png ; $V ^ { \lambda } : = \{ v \in V : h . v = \lambda ( h ) v \}$ ; confidence 0.346

117. l057000151.png ; $\vdash ( \lambda x . x ) : ( \sigma \rightarrow \sigma )$ ; confidence 0.346

118. t12006089.png ; $Z _ { j } / Z$ ; confidence 0.345

119. t12019019.png ; $t ( r + 1 , r ) \leq \frac { \operatorname { ln } r } { 2 r } ( 1 + o( 1 ) )$ ; confidence 0.345

120. s130510158.png ; $d _ { \operatorname{out} \leq} 2$ ; confidence 0.345

121. i120050102.png ; $\operatorname { log } \alpha _ { n } = o ( \operatorname { log } n )$ ; confidence 0.345

122. c12030022.png ; $\mathcal{O} _ { \mathcal{H} }$ ; confidence 0.345

123. a130240276.png ; $\leq F _ { \alpha ; q , n - \gamma }$ ; confidence 0.345

124. b110100347.png ; $x \in E$ ; confidence 0.345

125. s13011050.png ; $\mathbf{Z} [ x _ { 1 } , \ldots , x _ { n } ]$ ; confidence 0.345

126. w1201906.png ; $\psi _ { \operatorname{w} } ( x , p , t ) = \int _ { \mathbf{R} ^ { 3 N } } e ^ { i p z / \hbar } \overline { \psi } \left( x + \frac { z } { 2 } , t \right) \psi \left( x - \frac { z } { 2 } , t \right) d z,$ ; confidence 0.345

127. b13021015.png ; $f _ { b } = \sum _ { r \ni b } F _ { r }$ ; confidence 0.345

128. d130060102.png ; $m _{Y _ { 1 } , \operatorname{obs}} ( \{ y _ { 1,1 } , y _ { 1,3 } , y _ { 1,8 } \} ) = 1$ ; confidence 0.345

129. c130070240.png ; $\operatorname { ord } _ { T } ( d \tau _ { i } / d \tau )$ ; confidence 0.345

130. b130200111.png ; $a \in \mathfrak { g } ^ { n_1 \alpha _ { 1 } + \ldots }$ ; confidence 0.345

131. b13004035.png ; $\mathcal{W}$ ; confidence 0.345

132. r130070102.png ; $f _ { n } \in H ^ { 0 }$ ; confidence 0.345

133. a01197024.png ; $a_k$ ; confidence 0.345

134. p1201305.png ; $a_k$ ; confidence 0.345

135. b1200502.png ; $B_E$ ; confidence 0.345

136. e120240119.png ; $H ^ { 1 } \left( \overline { Y _ { 1 } ( N ) } ; \operatorname { Sym } ^ { k - 2 } R ^ { 1 } \overline { f } *\mathbf{Z} _ { p } \right) \bigotimes \mathbf{Q} _ { p },$ ; confidence 0.344

137. b12022093.png ; $D _ { \xi } = ( 1 , v _ { 1 } , \dots , v _ { N } , | v | ^ { 2 } / 2 + I ^ { 2 } / 2 ) \mathbf{R} _ { + }$ ; confidence 0.344

138. l12009097.png ; $[ . ,. ]_A$ ; confidence 0.344

139. p13009019.png ; $f ( x ) = \int _ { \partial B ( x _ { 0 } , r ) } P ( x , \xi ) f ( \xi ) d \sigma ( \xi ),$ ; confidence 0.344

140. a130050215.png ; $\sum _ { n \leq x } S ( n ) = A _ { 2 } x + O ( \sqrt { x } ) \quad \text { as } x \rightarrow \infty,$ ; confidence 0.344

141. d110020103.png ; $c_1 , \ldots , c_n \in \mathbf{C}$ ; confidence 0.344

142. r11011044.png ; $\Rightarrow w ( x _ { 1 } , \dots , x _ { n } ) = e,$ ; confidence 0.344

143. e12002037.png ; $\operatorname{cat} ( X ) \leq 1$ ; confidence 0.344

144. a13004015.png ; $\vdash _ { \mathcal{D} }$ ; confidence 0.344

145. b015350310.png ; $x \in H$ ; confidence 0.344

146. b120130102.png ; $\|hF\|_p \geq \|hg\|_p$ ; confidence 0.344

147. w120030101.png ; $\| ( x _ { n } + x ) / 2 \| \rightarrow \| x \|$ ; confidence 0.344

148. w12011021.png ; $= | t | ^ { - n } \int \int e ^ { - 2 i \pi t ^ { - 1 } y . \eta } { a ( x + y , \xi + \eta ) d y d \eta },$ ; confidence 0.344

149. c1301408.png ; $A ^ { * } = ( a _ { i , j } ) ^ { * } = ( \overline { a _ { j , i } } )$ ; confidence 0.344

150. b12002019.png ; $\frac { n ^ { 1 / 4 } } { ( \operatorname { log } n ) ^ { 1 / 2 } } \| \alpha _ { n } + \beta _ { n } \| \stackrel { d } { \rightarrow } \| B \| ^ { 1 / 2 },$ ; confidence 0.344

151. b13006013.png ; $\| x \| _ { 2 } = \left( \sum _ { i } | x _ { i } | ^ { 2 } \right) ^ { 1 / 2 } , \| x \| _ { \infty } = \operatorname { max } _ { i } | x _ { i } |,$ ; confidence 0.344

152. b12042086.png ; $\mathbf{Z} / n \mathbf{Z}$ ; confidence 0.344

153. m12003097.png ; $e _ { 0 } = y _ { 0 } - \overset{\rightharpoonup} { x } _ { 0 } ^ { t} \overset{\rightharpoonup} { \theta }$ ; confidence 0.343

154. k05584018.png ; $( \mathcal{K}, - [. , .] )$ ; confidence 0.343

155. t130130103.png ; $\operatorname { Ext } _ { \Delta } ^ { i } ( T , T ) = 0$ ; confidence 0.343

156. a010210142.png ; $w$ ; confidence 0.343

157. b1201609.png ; $x _ { j } ^ { \prime } = \sum _ { i , k } p _ { i k,j } x_i x _ { k } , \quad x _ { i } \geq 0 , \sum _ { i } x _ { i } = 1.$ ; confidence 0.343

158. w12020022.png ; $\| r\|$ ; confidence 0.343

159. l0570206.png ; $( F _ { n } ) _ { n \in \mathbf{N} }$ ; confidence 0.343

160. e120190179.png ; $h _ { 1 } ^ { \prime }$ ; confidence 0.343

161. b12022016.png ; $f ( v ) = \frac { \rho } { ( 2 \pi T ) ^ { N / 2 } } e ^ { - |v - u| ^ { 2 } / 2 T },$ ; confidence 0.343

162. j13002052.png ; $99 \%$ ; confidence 0.343

163. h046010138.png ; $\dim W \geq 5$ ; confidence 0.343

164. s1305905.png ; $\{ c _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.343

165. m12009063.png ; $\| P ( D ) ( \phi ) \| _ { 2 } \geq C \| \phi \| _ { 2 } ( L ^ { 2 } \text { norms } ).$ ; confidence 0.343

166. j13007047.png ; $\{ F ( z _ { n } ) \}$ ; confidence 0.343

167. h13006050.png ; $\alpha \in \widetilde{ D }$ ; confidence 0.342

168. p12013018.png ; $\| \lambda \theta ^ { n } \| \rightarrow 0$ ; confidence 0.342

169. b12043069.png ; $\Psi ( y \bigotimes x ) = q x \bigotimes y + ( q ^ { 2 } - 1 ) y \bigotimes x.$ ; confidence 0.342

170. j12002071.png ; $t \leq T$ ; confidence 0.342

171. c0221108.png ; $\operatorname { lim } _ { n \rightarrow \infty } \mathsf{P} \{ X ^ { 2 } \leq x | H _ { 0 } \} = \mathsf{P} \{ \chi _ { k - 1 } ^ { 2 } \leq x \}.$ ; confidence 0.342

172. b12016043.png ; $\{ f _ { i } \} _ { 1 } ^ { m }$ ; confidence 0.342

173. a13026029.png ; $...$ ; confidence 0.342

174. b13020050.png ; $a _ { i i } = 0$ ; confidence 0.342

175. d12012035.png ; $a : g \rightarrow g ^ { \prime }$ ; confidence 0.342

176. m12015014.png ; $\mathbf{R} ^ { p \times n }$ ; confidence 0.342

177. k055840222.png ; $A| _ { \mathcal{L} }$ ; confidence 0.342

178. s13002032.png ; $d \gamma = | \langle v , N _ { x } \rangle | d v d x$ ; confidence 0.342

179. a1302206.png ; $0 \rightarrow A \stackrel { f } { \rightarrow } B \stackrel { g } { \rightarrow } C \rightarrow 0$ ; confidence 0.342

180. s120340189.png ; $\widetilde{ \Sigma }$ ; confidence 0.342

181. e120230162.png ; $= \int _ { M } \sigma ^ { k + 1* } [ \Omega ( d L \Delta ) ( Z ^ { k + 1 } ) ].$ ; confidence 0.342

182. d12012053.png ; $\operatorname{dom} a_1= \operatorname { dom } a_1'$ ; confidence 0.342

183. a13022024.png ; $g \tilde { h } = h$ ; confidence 0.342

184. a13008072.png ; $t _ { n } ( x ) = \frac { c _ { n } } { s } \left( 1 + \frac { ( x - m ) ^ { 2 } } { s ^ { 2 } n } \right) ^ { - ( n + 1 ) / 2 }$ ; confidence 0.342

185. a012460168.png ; $\tilde{x}$ ; confidence 0.342

186. c12008018.png ; $\sum _ { i = 0 } ^ { m } a _ { m - i } [ A _ { 1 } ^ { m - i } , A _ { 1 } ^ { n - i - 1 } A _ { 2 } ] = 0.$ ; confidence 0.342

187. e120230105.png ; $D ^ { \alpha } = D _ { 1 } ^ { \alpha _ { 1 } } \ldots D _ { n } ^ { \alpha _ { n } }$ ; confidence 0.342

188. w1200508.png ; $C ^ { \infty } ( \mathbf{R} ^ { m } , \mathbf{R} )$ ; confidence 0.341

189. f120150166.png ; $\mu ( A ) = \operatorname { inf } \{ \| T \| : \alpha ( A - T ) = \infty \}$ ; confidence 0.341

190. l11001025.png ; $\{ \mathbf{P} , + , . , \vee , \wedge \}$ ; confidence 0.341

191. b12032096.png ; $a _ { m } = m ^ { 1 / p }$ ; confidence 0.341

192. b13020010.png ; $D A$ ; confidence 0.341

193. t120200144.png ; $\frac { \max_{k = m + 1 , \ldots , m + n}| g ( k ) | } { \sum _ { j = 1 } ^ { n } | b _ { j } z _ { j } ^ { k } | } \geq \frac { 1 } { n } ( \frac { \delta } { 2 } ) ^ { n - 1 }.$ ; confidence 0.341

194. l12005024.png ; $=\frac { 1 } { 2 \sqrt { 2 \pi } } \int _ { 0 } ^ { \infty } \int _ { 0 } ^ { \infty } \operatorname { exp } \left( - \frac { 1 } { 2 } \left( \frac { x u } { v } + \frac { x v } { u } + \frac { u v } { x } \right) \right) \times \times \left( \frac { 1 } { x } + \frac { 1 } { u } + \frac { 1 } { v } \right) f ( u ) g ( v ) d u d v.$ ; confidence 0.341

195. b1200808.png ; $\mathcal{E} _ { \operatorname{wor} } ( P , m ) = \operatorname { sup } _ { p \in P } | \epsilon ( p , m ) |$ ; confidence 0.341

196. i13008026.png ; $L _ { 2 } ^ { \prime \prime }$ ; confidence 0.341

197. l120120160.png ; $M _ { \operatorname{p} }$ ; confidence 0.341

198. l12007065.png ; $v _ { t } / r ^ { t }$ ; confidence 0.341

199. e13007012.png ; $n \in I$ ; confidence 0.341

200. b13001042.png ; $V ^ { * } = V \bigcup V _ { 1 } \bigcup \ldots \bigcup V _ { t },$ ; confidence 0.340

201. i13009070.png ; $P ( T ) = T ^ { n } + a _ { n - 1 } T ^ { n - 1 } + \ldots + a _ { 0 }$ ; confidence 0.340

202. s0911904.png ; $V = V _ { \bar{0}} \oplus V _ { \bar{1} }$ ; confidence 0.340

203. w12019030.png ; $= \sum _ { k , l } A _ { k l } \int _ { \mathbf{R} ^ { 3 N } } e ^ { i p z / \hbar } u _ { k } \left( x - \frac { z } { 2 } \right) \overline { u_l } \left( x + \frac { z } { 2 } \right) d z.$ ; confidence 0.340

204. m130110113.png ; $\left( \frac { \partial \phi } { \partial t } \right) | _ { x _ { k } ^ { 0 } } = \frac { D \phi } { D t } , \left( \frac { \partial \phi } { \partial t } \right) | _ { x _ { i } } = \frac { \partial \phi } { \partial t } , \left( \frac { \partial x _ { i } } { \partial t } \right) | _ { x _ { k } ^ { 0 } } = v _ { i }.$ ; confidence 0.340

205. w13006038.png ; $\mathcal{T}_{g,n} $ ; confidence 0.340

206. c1203008.png ; $S _ { i } ^ { * } S _ { j } = 0 , i \neq j,$ ; confidence 0.340

207. p13014026.png ; $f ( x ) = \frac { 1 } { 4 \pi ^ { 2 } } \int _ { S ^ { 1 } } \int _ { - \infty } ^ { \infty } \frac { \hat { f } \rho ( \alpha , p ) } { \alpha . x - p } d p d \alpha,$ ; confidence 0.340

208. a0106407.png ; $\geq 2$ ; confidence 0.340

209. a11022031.png ; $\{ e _ { 1 } , \ldots , e _ { n } \}$ ; confidence 0.340

210. c130160149.png ; $\operatorname{PH}$ ; confidence 0.340

211. a01211032.png ; $T _ { i }$ ; confidence 0.340

212. a130240488.png ; $( \beta _ { i 0 } , \ldots , \beta _ { i k } )$ ; confidence 0.339

213. c023150276.png ; $p ^ { r}$ ; confidence 0.339

214. c13019017.png ; $\operatorname{clos} ( N \backslash L )$ ; confidence 0.339

215. s13064025.png ; $\operatorname{spec} T ( a ) = \operatorname { Ran } ( a ) \bigcup \{ z \notin \operatorname { Ran } ( a ) : \text { wind } ( a - z ) \neq 0 \}.$ ; confidence 0.339

216. s12023067.png ; $K _ { 2 } ( m \times m ) = I _ { m }$ ; confidence 0.339

217. b13017020.png ; $d S _ { t } = \mu S _ { t } d t + \sigma S _ { t } d w _ { t },$ ; confidence 0.339

218. b110220144.png ; $ i = 0$ ; confidence 0.339

219. c11033012.png ; $p_j$ ; confidence 0.339

220. h13009051.png ; $G ^ { * * }$ ; confidence 0.339

221. l05763058.png ; $a \in P$ ; confidence 0.339

222. w13009073.png ; $\mathcal{H} _ { k } ( x ) = ( - 1 ) ^ { n } e ^ { x ^ { 2 } / 2 } D _ { x } ^ { k } e ^ { - x ^ { 2 } / 2 }$ ; confidence 0.339

223. a12005064.png ; $A ( 0 ) u_0 + f ( 0 ) \in \overline { D ( A ( 0 ) ) }$ ; confidence 0.339

224. c13010017.png ; $\{ A ; \} _ { i = 1 } ^ { n } \subset \mathcal{A}$ ; confidence 0.339

225. v120020129.png ; $F * = q * p * ^ { - 1 }$ ; confidence 0.339

226. s13038024.png ; $\operatorname { Int } _ { \tau } A$ ; confidence 0.339

227. k1201301.png ; $\int _ { a } ^ { b } p ( x ) f ( x ) d x \approx Q _ { 2 ^ {i} ( n + 1 ) - 1 } [ f ] =$ ; confidence 0.339

228. d12012051.png ; $\operatorname{dom} \alpha_{j+1}^{\prime} = \operatorname { codom } \alpha _ { j } ^ { \prime }$ ; confidence 0.339

229. b120040182.png ; $\Sigma _ { n = 1 } ^ { \infty } | x ^ { * } ( x _ { n } ) | < \infty$ ; confidence 0.339

230. b12036022.png ; $p_z$ ; confidence 0.338

231. b110380115.png ; $\widehat{\mathbf{C}}$ ; confidence 0.338

232. f120110215.png ; $| \operatorname { Im } \zeta | / | \operatorname { Re } \zeta | \rightarrow 0$ ; confidence 0.338

233. d13006045.png ; $( x _ { j _ { 1 } } , \dots , x _ { j _ { k } } )$ ; confidence 0.338

234. f13024022.png ; $\langle x y z \rangle : = \langle y , z \rangle x$ ; confidence 0.338

235. f12001022.png ; $\widetilde{ K } ^ { 0 } ( \check{\pi} _ { 1 } ( X , * ) )$ ; confidence 0.338

236. w13008071.png ; $\widetilde{ g } = \text { Lie } ( G )$ ; confidence 0.338

237. a13027011.png ; $Q _ { n } : Y \rightarrow X _ { n }$ ; confidence 0.338

238. t12013020.png ; $= \left( \frac { e ^ { \sum _ { 1 } ^ { \infty } x _ { i } ^ { i } z ^ { i } } \tau _ { n } ( x - [ z ^ { - 1 } ] , y ) z ^ { n } } { \tau _ { n } ( x , y ) } \right) _ { n \in \mathbf{Z} } , \Psi _ { 2 } ( z ) = e ^ { \sum _ { 1 } ^ { \infty } y _ { i } z ^ { - i } } S _ { 2 } \chi ( z ) =$ ; confidence 0.338

239. m13025056.png ; $( \rho _ { \varepsilon } ) _ { \varepsilon > 0 } \subset \mathcal{D} ( \mathbf{R} ^ { n } )$ ; confidence 0.338

240. e12015019.png ; $\frac { \mathcal{D} \xi ^ { i } } { d t } = \frac { d \xi ^ { i } } { d t } + \frac { 1 } { 2 } g ^ { i } ;r \xi ^ { r },$ ; confidence 0.338

241. s13064046.png ; $a ( e ^ { i \theta } ) = b ( e ^ { i \theta } ) \prod _ { r = 1 } ^ { R } \omega _ { \alpha _ { r } , \beta _ { r } } ( e ^ { i ( \theta - \theta _ { r } ) } ),$ ; confidence 0.338

242. z13011040.png ; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \approx \Delta \frac { 1 } { x } = \frac { 1 } { x ( x + 1 ) } , x = 1,2 , \dots,$ ; confidence 0.338

243. a130040515.png ; $\mathfrak { A } = \langle \mathbf{A} , \mathcal{C} \rangle$ ; confidence 0.337

244. a0127908.png ; $q_i$ ; confidence 0.337

245. b11065036.png ; $P \in \mathcal{P}$ ; confidence 0.337

246. s12017054.png ; $y \underset{ \sim}{\succ}_{i} z$ ; confidence 0.337

247. a12020049.png ; $\mathfrak { p } _ { i } ( t ) = \prod _ { m = 1 , m \neq i } ^ { n } \frac { t - t _ { m } } { t _ { i } - t _ { m } } \quad ( i = 1 , \ldots , n ).$ ; confidence 0.337

248. a120260123.png ; $\hat{y}_ { i }$ ; confidence 0.337

249. l12012010.png ; $|.|_{\operatorname{p}}$ ; confidence 0.337

250. w1201809.png ; $W ( A )$ ; confidence 0.337

251. s13065010.png ; $\rho _ { n + 1} = \Phi _ { n + 1 } ( 0 )$ ; confidence 0.337

252. a12017020.png ; $p ( a , t ) = \operatorname c_0 e ^ { \lambda ^ { * } ( t - a ) } \Pi ( a ) ( 1 + \Omega ( t - a ) ),$ ; confidence 0.337

253. b12043014.png ; $a , b \in B$ ; confidence 0.337

254. l057000191.png ; $( \lambda x . f ( x ) ) . e = f ( e )$ ; confidence 0.337

255. l13006062.png ; $m_0 = n , m_1 = a,$ ; confidence 0.337

256. d120230171.png ; $\left( \begin{array} { c } { 0 } \\ { G _ { i + 1 } } \end{array} \right) = Z _ { i } G _ { i } \Theta _ { i } \left( \begin{array} { c c } { 1 } & { 0 } \\ { 0 } & { 0 } \end{array} \right) + G _ { i } \Theta _ { i } \left( \begin{array} { c c } { 0 } & { 0 } \\ { 0 } & { I _ { p + q - 1 } } \end{array} \right),$ ; confidence 0.337

257. w12009010.png ; $G = \operatorname{GL} _ { n } ( K )$ ; confidence 0.337

258. m130230150.png ; $( ( X _ { n + 1 } , B _ { n + 1 } ) , f _ { n + 1 } ) = ( ( X _ { n } ^ { + } , ( \phi _ { * } ^ { + } ) ^ { - 1 } \phi _ { * } B _ { n } ) , f _ { n } \circ \phi ^ { - 1 } \circ \phi ^ { + } )$ ; confidence 0.337

259. s12015080.png ; $G_{*}$ ; confidence 0.337

260. b120040159.png ; $\|x \|_X \| y \| _ { X ^ { \prime } } \leq ( 1 + \epsilon ) \| f \| _ { L _ { 1 } }$ ; confidence 0.337

261. c12026060.png ; $( \mathcal{L} _ { h k } U ) _ { j } ^ { n } \equiv 0$ ; confidence 0.337

262. w12020016.png ; $R [ K _ { x } ( x _ { \nu } , . ) ] = 0 , \quad \nu = 2 , \dots , n - 1,$ ; confidence 0.336

263. b12013094.png ; $\int _ { D } z ^ { n } | \varphi ( z ) | ^ { p } d A ( z ) = 0$ ; confidence 0.336

264. s12034055.png ; $c_ { 1 } ( A )$ ; confidence 0.336

265. b12022038.png ; $\partial _ { t } f + a ( \xi ) . \nabla _ { x } f = \frac { M _ { f } - f } { \varepsilon },$ ; confidence 0.336

266. f130290147.png ; $L = M , \phi ^ { \operatorname{op} } = \operatorname{id} _ { L }$ ; confidence 0.336

267. j13002063.png ; $I _ { \alpha }$ ; confidence 0.336

268. b13007063.png ; $a \mapsto a b $ ; confidence 0.336

269. a13012033.png ; $( q , q ^ { d - 2 } )$ ; confidence 0.336

270. d12025012.png ; $x \rightarrow x - \phi ( x )$ ; confidence 0.336

271. b120430126.png ; $\Delta u ^ { i } \square_j = u ^ { i } \square _ { a } \bigotimes u ^ { a } \square_j , \varepsilon u ^ { i } \square_j = \delta ^ { i } \square_j$ ; confidence 0.336

272. b130290104.png ; $R ( I ) = \oplus _ { n \geq 0 } I ^ { n }$ ; confidence 0.336

273. b12016060.png ; $x _ { l }$ ; confidence 0.336

274. l12004017.png ; $u _ { i } ^ { n }$ ; confidence 0.336

275. m13025095.png ; $v \in L ^ { \infty } ( \mathbf{R}^ { n } )$ ; confidence 0.336

276. l11004012.png ; $x _ { 1 } , \dots , x _ { n } \in G$ ; confidence 0.336

277. q12003028.png ; $X. ( f g ) = \mu ( \Delta X . ( f \bigotimes g ) ),$ ; confidence 0.335

278. w12011017.png ; $\check{\widehat { u }} = u$ ; confidence 0.335

279. m12027053.png ; $Q _ { j } ( z ) + P _ { j } ( z ) = 0 , \quad j = 1 , \dots , n,$ ; confidence 0.335

280. e1202701.png ; $x _ { 1 } < \ldots < x _ { m }$ ; confidence 0.335

281. m12016027.png ; $X = \left( \begin{array} { l } { X _ { 1 } } \\ { X _ { 2 } } \end{array} \right) , M = \left( \begin{array} { c } { M _ { 1 } } \\ { M _ { 2 } } \end{array} \right) , \Sigma = \left( \begin{array} { l l } { \Sigma _ { 11 } } & { \Sigma _ { 12 } } \\ { \Sigma _ { 21 } } & { \Sigma _ { 22 } } \end{array} \right),$ ; confidence 0.335

282. a130040459.png ; $\operatorname { Mod } ^ { *\operatorname{L} } \mathcal{D} ( \mathsf{K} ) = ( \textbf{SPP} _ { \operatorname{U} } \mathsf{K} ) ^ { *\operatorname{L} } $ ; confidence 0.335

283. t13013070.png ; $R \operatorname{Hom}_\Lambda ( T ,. ) : D ^ { b } ( \Lambda ) \rightarrow D ^ { b } ( \Gamma )$ ; confidence 0.335

284. a120160144.png ; $\overline { Q _ { it } } = n _ { i } q _ { it },$ ; confidence 0.335

285. s1305101.png ; $g : V \rightarrow \mathbf{Z} ^ { 0 }$ ; confidence 0.335

286. g13007029.png ; $a \in \varphi ( \mathcal{A} )$ ; confidence 0.335

287. t13009018.png ; $\pi_Y ( a ) \in T _ { X }$ ; confidence 0.335

288. e03500093.png ; $H ( \mathcal{U} )$ ; confidence 0.335

289. c13004025.png ; $n \in \mathbf{N} : = \{ 1,2 , \ldots \} , z \in \mathbf{C} \backslash \mathbf{Z} _ { 0 } ^ { - },$ ; confidence 0.335

290. s1203502.png ; $= b _ { 1 } u ( t - 1 ) + \ldots + b _ { m } u ( t - m ) + e ( t ),$ ; confidence 0.335

291. a130040638.png ; $\langle \textbf{Me} _ { \mathcal{S} _ { P } } \mathfrak { M } , F _ { \mathcal{S} _ { P } } \mathfrak { M } \rangle$ ; confidence 0.335

292. d120020216.png ; $ k = k + 1$ ; confidence 0.335

293. m12012029.png ; $0 \neq I \triangleleft R$ ; confidence 0.335

294. s120320123.png ; $\operatorname { ev } _ { x } ( 1 \otimes \xi _ { i } ) = 0$ ; confidence 0.334

295. i13005058.png ; $F + ( x ) = \sum _ { j = 1 } ^ { J } ( m _ { j } ^ { + } ) ^ { 2 } e ^ { - k _ { j } x } + \frac { 1 } { 2 \pi } \int _ { - \infty } ^ { \infty } r _ { + } ( k ) e ^ { i k x } d k$ ; confidence 0.334

296. w1300505.png ; $W ( \mathfrak { g } ) = \bigwedge \mathfrak { g } ^ { * } \bigotimes S \mathfrak { g } ^ { * },$ ; confidence 0.334

297. w13010010.png ; $B _ { a } ( x )$ ; confidence 0.334

298. t130050180.png ; $\sigma _ { \operatorname{T} } ( ( L _ { A } , R _ { B } ) , \mathcal{L} ( \mathcal{H} ) ) = \sigma _ { \operatorname{T} } ( A , \mathcal{H} ) \times \sigma _ { T } ( B , \mathcal{H} )$ ; confidence 0.334

299. d12012049.png ; $\alpha ^ { \prime } = ( a ^ { \prime_1 } , \ldots , a ^ { \prime_m } )$ ; confidence 0.334

300. a130240184.png ; $\eta _ { i .} - \eta _ { - }$ ; confidence 0.334

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/66. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/66&oldid=45865