User:Maximilian Janisch/latexlist/latex/NoNroff/62
List
1. ; $e ^ { \pi }$ ; confidence 0.439
2. ; $\mathsf{E} ( X ) = 0$ ; confidence 0.439
3. ; $a b + \frac { 1 } { 2 \iota} \{ a , b \},$ ; confidence 0.439
4. ; $\langle X , v \rangle$ ; confidence 0.439
5. ; $f _ { 1 } , \ldots , f _ { n }$ ; confidence 0.439
6. ; $\dot { v }_i$ ; confidence 0.439
7. ; $Q ( A ) = \sum _ { B ; A \subseteq B} m ( B ) $ ; confidence 0.439
8. ; $\sigma ( A ) \subseteq \cup _ { i , j = 1 \atop i \neq j } ^ { n } K _ { i , j } ( A ).$ ; confidence 0.439
9. ; $X \subset {\bf R} ^ { n }$ ; confidence 0.439
10. ; $\{ \otimes ^ { * } {\cal E} , \nabla \}$ ; confidence 0.439
11. ; $\{ a _ { n } \}$ ; confidence 0.439
12. ; $v ^ { + }$ ; confidence 0.439
13. ; $L ( G ) = [ l_{ij} ]$ ; confidence 0.438
14. ; $X ( t _ { 1 } )$ ; confidence 0.438
15. ; $F \in \operatorname{Fi} _ {\cal D } \bf A$ ; confidence 0.438
16. ; $( D . Z _ { 1 } ) = ( D . Z _ { 2 } ) \in \bf R$ ; confidence 0.438
17. ; $\langle a \rangle$ ; confidence 0.438
18. ; $h . k = ( \theta \bigotimes \varphi - \varphi \bigotimes \theta ) \bigotimes ( \theta \bigotimes \varphi - \varphi \bigotimes \theta ) \in$ ; confidence 0.438
19. ; $\partial_t$ ; confidence 0.438
20. ; $\text{II} _ { s + 2,2 }$ ; confidence 0.438
21. ; $\times G _ { p + 2 , q } ^ { m , n + 2 } \left( x \Bigg| \begin{array} { c } { 1 - \mu + i \tau , 1 - \mu - i \tau , ( \alpha _ { p } ) } \\ { ( \beta _ { q } ) } \end{array} \right) , f ( x ) = \frac { 1 } { \pi ^ { 2 } } \int _ { 0 } ^ { \infty } \tau \operatorname { sinh } ( 2 \pi \tau ) F ( \tau ) d \tau\times$ ; confidence 0.438
22. ; $x _ { n } \downarrow 0$ ; confidence 0.438
23. ; $y \in x$ ; confidence 0.438
24. ; $\mathfrak { a } / W$ ; confidence 0.438
25. ; $u \in {\bf C} ^ { G }$ ; confidence 0.438
26. ; ${\bf M} ( S )$ ; confidence 0.438
27. ; $F _ { n } ( t )$ ; confidence 0.438
28. ; $2 ^ {k}$ ; confidence 0.438
29. ; $\omega _ { n } = n$ ; confidence 0.438
30. ; $\overline { d } _ { ( k , 1 ^ { n - k } ) }$ ; confidence 0.438
31. ; $\lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \tilde { \gamma }$ ; confidence 0.438
32. ; $m _ { 2 }$ ; confidence 0.437
33. ; $T _ { \phi }$ ; confidence 0.437
34. ; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \approx \frac { 1 } { ( a + b x ) ^ { 2 } }$ ; confidence 0.437
35. ; $\Omega ^ { a } = \lambda _ { i } ^ { a } \Omega ^ { i } , \quad \Delta \lambda _ { i } ^ { a } \bigwedge \Omega ^ { i } = 0 , \quad i , j = 1 , \ldots , m;$ ; confidence 0.437
36. ; $\tilde { h } _ { 1 } \ldots \tilde { h } _ { k }$ ; confidence 0.437
37. ; $\square _ { A ( R ) } {\cal C} ^ { A ( R) }$ ; confidence 0.437
38. ; $\phi$ ; confidence 0.437
39. ; $\sigma _ { \mathfrak { P } } \equiv x ^ { N ( \mathfrak { p } ) } \operatorname { mod } \mathfrak { P }$ ; confidence 0.437
40. ; $\lambda = \beta ^ { m }$ ; confidence 0.437
41. ; ${\bf C A} _ { 3 }$ ; confidence 0.437
42. ; $A \stackrel { x } { \rightarrow } B \stackrel { t } { \rightarrow } B$ ; confidence 0.437
43. ; ${\bf Z}_+$ ; confidence 0.437
44. ; $\lambda _ { n } = n ^ { 2 }$ ; confidence 0.437
45. ; $\{ \xi ( t ) \} _ { t \in [ a , b ] }$ ; confidence 0.437
46. ; $T \in \cal X$ ; confidence 0.437
47. ; $\partial _ { t } f + a ( \xi ) . \nabla _ { x } f = \sum _ { n = 1 } ^ { \infty } \delta ( t - t _ { n } ) ( M _ { f ^{ n -}} - f ^ { n - } ),$ ; confidence 0.437
48. ; $\{ c _ { n } \}$ ; confidence 0.437
49. ; $D _ { n } ( x , a ) = \left( \frac { x + \sqrt { x ^ { 2 } - 4 a } } { 2 } \right) ^ { n } + \left( \frac { x - \sqrt { x ^ { 2 } - 4 a } } { 2 } \right) ^ { n }.$ ; confidence 0.437
50. ; $\tilde{x} ( z ) = Z ( x ( n ) ) = \sum _ { j = 0 } ^ { \infty } x ( j ) z ^ { - j },$ ; confidence 0.437
51. ; $\lambda _ { i } \in \bf Z$ ; confidence 0.437
52. ; $x ^ { n } - n \sigma x ^ { n - 1 }$ ; confidence 0.437
53. ; ${\cal U} \}$ ; confidence 0.436 NOTE: should the parentesis be opened?
54. ; $t = t ^ { 0 } , \dots , t ^ { n } , \dots$ ; confidence 0.436
55. ; $\operatorname{SL} ( 2 , {\bf Z} )$ ; confidence 0.436
56. ; $A _ { 1 } , \ldots , A _ { n }$ ; confidence 0.436
57. ; $x _ { i } ^ {\color{blue} *}$ ; confidence 0.436
58. ; $p ^ { r } - 1$ ; confidence 0.436
59. ; $= 8 \pi ^ { 2 } \int _ { - \infty } ^ { \infty } \tau \operatorname { sinh } ( \pi \tau ) \left| \frac { \Gamma ( c - a + \frac { i \tau } { 2 } ) } { \Gamma ( a + \frac { i \tau } { 2 } ) } | ^ { 2 } \right| f ( \tau ) | ^ { 2 } d \tau.$ ; confidence 0.436
60. ; $A | _ { {\cal R} ( E _ { \lambda } )}$ ; confidence 0.436
61. ; $\psi ( y ; \eta ) = e ^ { i \eta .y } \phi ( y ; \eta )$ ; confidence 0.436
62. ; ${\bf C} ( 4 )$ ; confidence 0.436
63. ; ${\bf Z} _ { 2 } \times {\bf Z} _ { 4 }$ ; confidence 0.435
64. ; $n \times p$ ; confidence 0.435
65. ; $K _ { 2 } ^ { M } ( Y ( N ) )$ ; confidence 0.435
66. ; $f _ { n } ^ { * }$ ; confidence 0.435
67. ; $\delta ( P )$ ; confidence 0.435
68. ; $\mathsf{E} [ X _ { 0 } ] + \mathsf{E} \left[ X _ { \infty } \operatorname { log }^+ \frac { X _ { \infty } } { \mathsf{E} [ X _ { 0 } ] } \right] \leq$ ; confidence 0.435
69. ; $(a)_ { n } = \prod _ { i = 1 } ^ { n } ( a + i - 1 )$ ; confidence 0.435
70. ; $= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } ).$ ; confidence 0.435
71. ; $\partial _ { x ^\alpha}$ ; confidence 0.435
72. ; ${\cal K} _ { 2 }$ ; confidence 0.435
73. ; $\| . \|_{*}$ ; confidence 0.435
74. ; $n = n_l+ n_2$ ; confidence 0.435
75. ; $f ^ { ( n ) } \in L ^ { 2 } \widehat { ( {\bf R} ^ { n } ) }$ ; confidence 0.435
76. ; $X _ { 1 } , X _ { 2 } , \ldots$ ; confidence 0.435
77. ; $L = 0$ ; confidence 0.435
78. ; $| \varphi_j ( x ) | < c$ ; confidence 0.435
79. ; $\{ c _ { k } \}$ ; confidence 0.435
80. ; $\operatorname{BS} ( 1 , n ) = \left\langle a , b | a ^ { - 1 } b a = b ^ { n } \right\rangle$ ; confidence 0.435
81. ; ${\cal A} = ( A _ { 1 } , \dots , A _ { k } )$ ; confidence 0.435
82. ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k \in S } \frac { | g _ { 1 } ( k ) | } { M _ { d } ( k ) }$ ; confidence 0.434
83. ; $Q _ { 1 } , \dots , Q _ { k }$ ; confidence 0.434
84. ; $\{ E _ { n_j} \}$ ; confidence 0.434
85. ; $\cal I$ ; confidence 0.434
86. ; $x$ ; confidence 0.434
87. ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \bigcup _ { n \geq 0 } k _ { n },$ ; confidence 0.434
88. ; $\operatorname{SH} ^ { * } ( M , \omega , L _ { 1 } , L _ { 2 } ) \bigotimes \operatorname{SH} ^ { * } ( M , \omega , L _ { 2 } , L _ { 3 } ) \rightarrow \operatorname{SH} ^ { * } ( M , \omega , L _ { 1 } , L _ { 3 } ),$ ; confidence 0.434
89. ; ${\bf F} _ { q } [ x ] / ( f )$ ; confidence 0.434
90. ; $\text{(A)} \left\{ \begin{array} { l } { \overline{x} \square ^ { i } = f ^ { i } ( x ^ { 1 } , \ldots , x ^ { n } ) , \quad i = 1 , \ldots , n, } \\ { \overline { t } = t .} \end{array} \right.$ ; confidence 0.434
91. ; $A _ { m }$ ; confidence 0.434
92. ; $\left( \begin{array} { c } { a _ { k - 1 } } \\ { k - 1 } \end{array} \right)$ ; confidence 0.434
93. ; $c ( x ) = \bar{c}$ ; confidence 0.434
94. ; $\left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) \in \operatorname{SL} _ { 2 } ( {\bf Z} ).$ ; confidence 0.434
95. ; $C _ { B _ { 2 } } ( f ) \leq \frac { 2 ^ { n } } { n } ( 1 + o ( 1 ) ),$ ; confidence 0.434
96. ; $U \cap {\bf C} ^ { n }$ ; confidence 0.434
97. ; $Z ( {\frak g} )$ ; confidence 0.433
98. ; $i_ 1 = n - p$ ; confidence 0.433
99. ; $\operatorname{Diff} ( S ^ { 1 } ) / \operatorname{SL} ( 2 , {\bf R} )$ ; confidence 0.433
100. ; $O ( \varepsilon ^ { q } )$ ; confidence 0.433
101. ; $U _ { 0 } ^ { n } = U _ { J } ^ { n } = 0$ ; confidence 0.433
102. ; $d \tilde { \Omega } = d \lambda + O ( \lambda ^ { - 2 } ) d \lambda$ ; confidence 0.433
103. ; $q_R = q_Q$ ; confidence 0.433
104. ; $\operatorname{GL} ( V )$ ; confidence 0.433
105. ; $A ^ { n }$ ; confidence 0.433
106. ; $ { k }_\chi$ ; confidence 0.433
107. ; $X.( Y . f ) = ( Y X ) . f$ ; confidence 0.433
108. ; $R_S$ ; confidence 0.433
109. ; $x ^ { q }$ ; confidence 0.433
110. ; $a _ { 2 } ( g )$ ; confidence 0.433
111. ; $u _ { j } \equiv 0$ ; confidence 0.433
112. ; $l _ { i i }$ ; confidence 0.433
113. ; $\operatorname{Im}$ ; confidence 0.433
114. ; $f + ( 2 T ) ^ { - 1 } \| . \| ^ { 2 }$ ; confidence 0.433
115. ; $g _ { 1 } , \ldots , g _ { m }$ ; confidence 0.433
116. ; $Q x$ ; confidence 0.433
117. ; $\frak P$ ; confidence 0.433
118. ; ${\bf Z} _ { p ^ r}$ ; confidence 0.433
119. ; $\mathsf{E} [ C ] = \frac { R } { 1 - \rho }$ ; confidence 0.433
120. ; $\chi \in \operatorname { Sp } ( n )$ ; confidence 0.433
121. ; $K ^ { 2 } \times I \searrow \operatorname{pt}$ ; confidence 0.433
122. ; $\rho : {\cal F T} \operatorname{op} \rightarrow \omega \square \operatorname{Gpd}$ ; confidence 0.433
123. ; $U ( {\frak g} ) J$ ; confidence 0.433
124. ; $\leq 2 ^ { ( n ^ { 2 } ) }$ ; confidence 0.432
125. ; $\langle x , a \rangle = 0$ ; confidence 0.432
126. ; $P ^ { i } _ { r } = \delta ^ { i }_r$ ; confidence 0.432
127. ; $\frac { \partial v } { \partial x } = u + v ^ { 2 },$ ; confidence 0.432
128. ; $f _ { n } = f$ ; confidence 0.432
129. ; $\nu _ { 1 } * \chi _ { K _ { 1 } } + \ldots + \nu _ { 1 } { * } \chi _ { K _ { 1 } } = \delta,$ ; confidence 0.432
130. ; $p = ( p _ { 1 } , \dots , p _ { n } )$ ; confidence 0.432
131. ; $H ^ { 2 r } ( M , {\bf C} ) \neq 0 \quad \text { if } r = 1 , \dots , \frac { 1 } { 2 } \operatorname { dim } _ {\bf C } M.$ ; confidence 0.432
132. ; $L^1$ ; confidence 0.432
133. ; ${\bf u} = ( u _ { 1 } , \dots , u _ { m } ) \in \bf V$ ; confidence 0.432
134. ; $\left\{ \begin{array} { l l } { \frac { d u } { d t } + A ( t ) u = f ( t ) , } & { t \in [ 0 , T ], } \\ { u ( 0 ) = u _ { 0, } } \end{array} \right.$ ; confidence 0.432
135. ; $V \sim {\cal U} _ { p , n }$ ; confidence 0.432
136. ; $A = {\bf R} .1 \bigoplus N,$ ; confidence 0.432
137. ; $\otimes = \wedge$ ; confidence 0.431
138. ; $\{ 1 , \ldots , r , r + 1 , \ldots , r + 4 \}$ ; confidence 0.431
139. ; $u | _ { x = y} = \tau ( x ),$ ; confidence 0.431
140. ; $| R |$ ; confidence 0.431
141. ; $\delta _ { p } ( k ) = \operatorname { rank } _ {\bf Z } \overline{E} _ { 1 } ( k ) - \operatorname { rank } _ { {\bf Z} _ { p } } E _ { 1 } ( k ) \geq 0$ ; confidence 0.431
142. ; $g , g ^ { \prime } : \bf B \rightarrow C$ ; confidence 0.431
143. ; $\varepsilon _ { x } ^ { X \backslash V } ( R _ { s } ^ { X \backslash U } ) = R _ { s } ^ { X \backslash U } ( x )$ ; confidence 0.431
144. ; $0 \in \cal D$ ; confidence 0.431
145. ; $j > i : a _ { ij } = \sum _ { k = 1 } ^ { i } r _ { k i } r _ { k j }.$ ; confidence 0.431
146. ; ${\cal L} ^ { r } ( X , Y )$ ; confidence 0.431
147. ; $\langle {\bf A} , F \rangle \in \mathsf{K}$ ; confidence 0.431
148. ; $\underline{1} \rightarrow \underline{1} $; confidence 0.431
149. ; $\mathfrak { h } = \mathfrak { h } _ { R } \oplus i \mathfrak { h } _ { R }$ ; confidence 0.430
150. ; $G _ { i } ( A ) : = \Delta _ { r _ { i } ( A )} ( a _ { i , i } )$ ; confidence 0.430
151. ; $N ^ { i }$ ; confidence 0.430
152. ; $e _ { \mu }$ ; confidence 0.430
153. ; $P ^ { + } \subset \mathfrak { h } ^ { * }$ ; confidence 0.430
154. ; $x \in M , X \in \mathfrak { g },$ ; confidence 0.430
155. ; $\delta _ { W }$ ; confidence 0.430
156. ; $\frac { d } { d t } {\cal A} ( \sigma _ { t } ) | _ { t = 0 } = \int _ { M } \sigma ^ { k ^ { * } } ( Z ^ { k } \lrcorner d L \Delta ) =$ ; confidence 0.430
157. ; $e \in X$ ; confidence 0.430
158. ; $U _ { j } ^ { n }$ ; confidence 0.430
159. ; $\gamma ^ { - 1 } : \cal E \rightarrow E *$ ; confidence 0.430
160. ; $C ^ { \infty } ( S ^ { 1 } , \operatorname{SL}_ { 2 } ( {\bf C} ) )$ ; confidence 0.430
161. ; $R = \Delta |_{\cal G} :\cal G \rightarrow G \otimes A$ ; confidence 0.430
162. ; $E \cap \bf l$ ; confidence 0.430
163. ; $R / a$ ; confidence 0.430
164. ; ${\bf Z} / p ^ { m } ( 1 )$ ; confidence 0.430
165. ; $\operatorname { dim } Y < \operatorname { dim } X _ { n }$ ; confidence 0.430
166. ; $X _ { 1 } , \dots , X _ { n }$ ; confidence 0.429
167. ; $N \subset \tilde { N }$ ; confidence 0.429
168. ; $\frac { \partial L _ { i } } { \partial y _ { n } } = [ ( L _ { 2 } ^ { n } ) _ { - } , L _ { i } ],$ ; confidence 0.429
169. ; $\xi _ { L }$ ; confidence 0.429
170. ; $= 1 - \frac { 2 } { \pi } \sum _ { k = 1 } ^ { \infty } ( - 1 ) ^ { k - 1 } \int _ { ( 2 k - 1 ) \pi } ^ { 2 k \pi } \frac { e ^ { - t ^ { 2 } \lambda / 2 } } { \sqrt { - t \operatorname { sin } t } } d t , \quad \lambda > 0.$ ; confidence 0.429
171. ; $u \in C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.429
172. ; $\tilde { \varphi }$ ; confidence 0.429
173. ; $v \in {\bf R} ^ { n }$ ; confidence 0.429
174. ; $T _ { l } ( A ) = ( A _ { l^n } ) _ { n \in \bf N }$ ; confidence 0.429
175. ; $E ^ { \text{TF} }$ ; confidence 0.429
176. ; $d \alpha |_\xi$ ; confidence 0.429
177. ; $\overline { h ( n ) }$ ; confidence 0.429
178. ; $R_c$ ; confidence 0.429
179. ; $g_i \in \operatorname { BMOA}$ ; confidence 0.429
180. ; $H = - J \sum _ { i = 1 } ^ { N } S _ { i } S _ { i+ 1 } - {\cal H} \sum _ { i = 1 } ^ { N } S _ { i }$ ; confidence 0.429
181. ; $\rho \in \cal Y_{*}$ ; confidence 0.428
182. ; $H _ {\cal M } ^ { \bullet } ( X , {\bf Q} ( ^{\color{blue}*} ) )_ {\bf Z}$ ; confidence 0.428
183. ; $f , g \in L _ { p } ( {\bf R} _ { + } ; x ^ { \nu p - 1 } )$ ; confidence 0.428
184. ; $X = G = {\bf R} ^ { n }$ ; confidence 0.428
185. ; $\cal ( L _ { w } ( X , Y ) , L _ { w } ( X , Y ) * )$ ; confidence 0.428
186. ; $\pi : \operatorname { Mp} ( n ) \rightarrow \operatorname { Sp} ( n )$ ; confidence 0.428
187. ; $x _ { i } = \tilde { \xi } _ { i } ( U ) , \quad i = 1 , \dots , n$ ; confidence 0.428
188. ; $\square _ { p } F _ { q }$ ; confidence 0.428
189. ; $E,A \in M _ { m } ( P _ { n } )$ ; confidence 0.428
190. ; $p \in S$ ; confidence 0.428
191. ; $K _ { 1 } , \dots , K _ { \text{l} }$ ; confidence 0.428
192. ; $\{ G ,. , e , ^{- 1} \}$ ; confidence 0.428
193. ; $(u, \psi ) _ { L ^ { 2 } ( {\bf R} ^ { n } ) } ( \varphi , u ) _ { L ^ { 2 } ( {\bf R} ^ { n } ) } = ( {\cal H} ( u , v ) , {\cal H} ( \psi , \varphi ) ) _ { L ^ { 2 } ( {\bf R} ^ { 2 n } ) }.$ ; confidence 0.428
194. ; $\operatorname { lim } _ { n \rightarrow \infty } f ( x _ { n } ) = f ( n ) = \operatorname { lim } _ { n \rightarrow \infty } f ( y _ { n } ).$ ; confidence 0.428
195. ; $j = 1 , \ldots , p _ { t }$ ; confidence 0.428
196. ; $( x _ { c } , x _ { + } )$ ; confidence 0.428
197. ; $U ( ., . ) v \in C ^ { 1 } ( \Delta ; X )$ ; confidence 0.428
198. ; $\| f \|_X \leq C\| g \|_X$ ; confidence 0.428
199. ; $f _ { \rho } ^ { C } ( x ) : = f ( x ) - f _ { \rho } ( x )$ ; confidence 0.427
200. ; $p _ { m } ( z ) = \frac { ( z - 1 ) ^ { m + 1 } } { z } \frac { m ! } { 2 \pi i } \int _ { P } \frac { e ^ { w } } { ( e ^ { w } - z ) w ^ { m + 1 } } d w$ ; confidence 0.427
201. ; $d \geq 5$ ; confidence 0.427
202. ; $| z _ { 1 } | ^ { 2 } + \ldots + | z _ { n } | ^ { 2 } < 1$ ; confidence 0.427
203. ; $n > 1 / p$ ; confidence 0.427
204. ; $\{ x ^ { i } , \text { vp } 1 / x ^ { j } , \delta ^ { ( k ) } ( x ) : i , j , k \in {\bf N} _ { 0 } \}$ ; confidence 0.427
205. ; $y \in J$ ; confidence 0.427
206. ; $\sum _ { V } v ^ { \overline{( 1 ) }} \otimes v ^ { \overline{( 2 ) } }$ ; confidence 0.427
207. ; $Q = ( Y _ { Q } , < _ { Q } )$ ; confidence 0.427
208. ; $\xi _ { j } = \varepsilon \left( x _ { j } + \frac { 1 } { i } \frac { \partial \mu _ { 0 } } { \partial { k } _ { i } } ( k _ { c } , R _ { c } ) t \right) , j = 1 , \ldots , n,$ ; confidence 0.427
209. ; $C ^ { 0 , \sigma _ { 2 } ( t )} ( \Omega )$ ; confidence 0.427
210. ; $x = x _ { + } + x _ { - } , \quad y = y _ { + } + y _ { - } , \quad x _ { \pm } , y _ { \pm } \in {\cal K} _ { + }.$ ; confidence 0.427
211. ; $V _ { k + l } ^ { k - l } ( x , y ; \alpha ) =$ ; confidence 0.427
212. ; $n | { k }$ ; confidence 0.426
213. ; $r _ { 1 } = \ldots = r _ { n } = 1$ ; confidence 0.426
214. ; $a \in \bf R$ ; confidence 0.426
215. ; $\{ x \in {\bf l} ^ { 2 } : x _ { 1 } = 0 \}$ ; confidence 0.426
216. ; $l _ { i } ^ { 3 }$ ; confidence 0.426
217. ; $K N L$ ; confidence 0.426 ???
218. ; $\subset H _ {\cal M } ^ { \bullet } ( X , {\bf Q} (^ {\color{blue}*} ) ).$ ; confidence 0.426
219. ; $E ( \Gamma , \Delta ) \vdash _ {\cal D } E ( \varphi , \psi )$ ; confidence 0.426
220. ; $I_8$ ; confidence 0.426
221. ; $A ^ { p | q } = A ^ { \oplus p } \oplus \Pi ( A ) ^ { \oplus q }$ ; confidence 0.426
222. ; $K _ { R }$ ; confidence 0.426
223. ; ${\cal M} _ { g , n }$ ; confidence 0.426
224. ; $1 \leq \operatorname { max } _ { i } \left( \frac { 1 } { | \mu - b _ { i i } | } . \sum _ { j \neq i } | b _ { i j } | \right),$ ; confidence 0.426
225. ; $\varphi /\!/ G : ( G \times_{ G _ { x }} S ) / \!/ G \rightarrow X /\! / G$ ; confidence 0.425
226. ; $S \subset X$ ; confidence 0.425
227. ; $\operatorname { PSL } ( 2,3 ^ { 2^t } )$ ; confidence 0.425
228. ; $q \sim X _ { \nu } ^ { 2 } / \nu$ ; confidence 0.425
229. ; $y = \sum _ { i = 1 } ^ { I } \left( n _ { i } \sum _ { j = 1 } ^ { J } z _ { i j } p _ { i j } \right),$ ; confidence 0.425
230. ; $c _ { \alpha }$ ; confidence 0.425
231. ; $x _ { * } ^ { n + 1 }$ ; confidence 0.425
232. ; $( d / d x ) Y ( v , x ) \bf 1$ ; confidence 0.425
233. ; $\operatorname { Ext } _ { \Lambda } ^ { 1 } ( T , . )$ ; confidence 0.425
234. ; $\operatorname { min } _ { k = m + 1 , \ldots , m + N } | g ( k ) | \geq$ ; confidence 0.425
235. ; $c _ { q }$ ; confidence 0.425
236. ; $T ( a _ { 1 } , \dots , a _ { n } )$ ; confidence 0.425
237. ; $\overline { A \cup B } = { \overline{A} \cup \overline{B} }$ ; confidence 0.425
238. ; $\alpha \wedge ( d \alpha ) ^ { n } \neq 0$ ; confidence 0.425
239. ; $T _ { c }$ ; confidence 0.425
240. ; $M _ { 1 } = \rho \Delta V l b = \rho \Gamma { b }$ ; confidence 0.425
241. ; $C ^ { 0 }$ ; confidence 0.425
242. ; $f _ { b }$ ; confidence 0.424
243. ; $\sigma ^ { k } ( x ) = ( x , y ( x ) , y ^ { \prime } ( x ) , \ldots , y ^ { ( k ) } ( x ) ),$ ; confidence 0.424
244. ; $u _ { q } ( \mathfrak { g } )$ ; confidence 0.424
245. ; $\sum _ { i = 1 } ^ { n } \psi ( r _ { i } ) \overset{\rightharpoonup} { x } _ { i } = \overset{\rightharpoonup} { 0 },$ ; confidence 0.424
246. ; $P _ { m + 1 }$ ; confidence 0.424
247. ; $\Phi _ { \sigma } = \{ q \in Q : q x ^ { \sigma } = x q \text { for all } x \in R \}$ ; confidence 0.424
248. ; $a _ { m } + a _ { m - 1 }$ ; confidence 0.424
249. ; $R ( \mathfrak { q } )$ ; confidence 0.424
250. ; $\phi |_{\partial D}$ ; confidence 0.424
251. ; $S ^ { 2 n + 1 }$ ; confidence 0.424
252. ; $\{ 1 , \alpha , \alpha ^ { 2 } , \dots , \alpha ^ { n - 1 } \}$ ; confidence 0.424
253. ; ${\bf y} _ { 1 } , \dots , {\bf y} _ { j }$ ; confidence 0.424
254. ; $y_j$ ; confidence 0.424
255. ; $T _ { n } \rightarrow 0$ ; confidence 0.424
256. ; $\operatorname{P} _ { l } = \frac { \operatorname { exp } ( - \epsilon _ { l } / k _ { B } T ) } { \sum _ { l } \operatorname { exp } ( - \epsilon _ { l } / k _ { B } T ) }.$ ; confidence 0.423
257. ; $p_0 , p _ { 1 } , \dots$ ; confidence 0.423
258. ; $K _ { z }$ ; confidence 0.423
259. ; $\partial \bf B$ ; confidence 0.423
260. ; $\Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( f )$ ; confidence 0.423
261. ; $\mathfrak { S } _ { w } = x _ { r } \mathfrak { S } _ { v } + \sum \mathfrak { S } _ { v ( q , r ) },$ ; confidence 0.423
262. ; $x ^ { n }$ ; confidence 0.423
263. ; $\overline{L^\infty}$ ; confidence 0.423
264. ; $g : \overline { \Delta } \rightarrow {\bf R} ^ { n }$ ; confidence 0.423
265. ; $=\frac { 1 } { ( k + 1 ) ! ( l - 1 ) ! } \times \times \sum _ { \sigma \in S _ { k + \text{l} } } \operatorname { sign } \sigma . \omega ( K ( X _ { \sigma 1 } , \ldots , X _ { \sigma ( k + 1 ) } ) , X _ { \sigma ( k + 2 ) } , \ldots )$ ; confidence 0.423
266. ; $\text{p} \in T \backslash S$ ; confidence 0.423
267. ; $\phi * : K _ { 0 } ( {\cal R} \otimes {\bf C} [ \Gamma ] ) \rightarrow \bf C$ ; confidence 0.423
268. ; ${\bf Q} ( \mu _ { p } )$ ; confidence 0.423
269. ; $= \varphi \bigwedge \psi \bigotimes [ X , Y ] + \varphi \bigwedge {\cal L} _ { X } \psi \bigotimes Y - {\cal L} _ { Y } \varphi \bigwedge \psi \bigotimes X +$ ; confidence 0.423
270. ; $\partial _ { n } F = ( 1 / 2 \pi i n ) \operatorname { Res } _ { 0 } \xi ^ { - n } d S$ ; confidence 0.423
271. ; $\operatorname { diag } ( \gamma _ { 1 } , \ldots , \gamma _ { n } )$ ; confidence 0.422
272. ; $x ^ { k }$ ; confidence 0.422
273. ; $F _ { n } f = \left[ \prod _ { j = 1 } ^ { n - 1 } ( F + j ) \right] f,$ ; confidence 0.422
274. ; $\operatorname { Ker } ( \text { ad } ) = \mathfrak { g }$ ; confidence 0.422
275. ; $u \in {\bf R} ^ { m }$ ; confidence 0.422
276. ; $T ^ { 2 n + 1 }$ ; confidence 0.422
277. ; $r _ { j } \in {\bf R} _ { \geq 0 }$ ; confidence 0.422
278. ; $f = \sum _ { i = 1 } ^ { n } a _ { i } \chi _ {A_ i }$ ; confidence 0.422
279. ; ${\bf t} ^ { \text{em} . f } = {\bf E \bigotimes E + B \bigotimes B} - \frac { 1 } { 2 } ( {\bf E} ^ { 2 } + {\bf B} ^ { 2 } ) 1,$ ; confidence 0.422
280. ; $a _ { i j}$ ; confidence 0.422
281. ; $\operatorname{St}$ ; confidence 0.422
282. ; $W ( M )$ ; confidence 0.422
283. ; $X _ { t }$ ; confidence 0.422
284. ; $\bigwedge _ { j \in J } {\cal T} ( u _ { j } ) \leq {\cal T} \left( \underset { j \in J } { \vee } u _ { j } \right).$ ; confidence 0.422
285. ; $g ^ { - 1 } \{ p _ { 1 } , p _ { 2 } ; \ldots ; p _ { 4 m - 1 } , p _ { 4 m } \} ( W ( g ) \bigotimes \ldots \bigotimes W ( g ) )$ ; confidence 0.422
286. ; $\bf T$ ; confidence 0.422
287. ; $\operatorname{Ric}( \tilde{g} ) \in \mathsf{S} ^ { 2 } \tilde {\cal E }$ ; confidence 0.422
288. ; ${\bf C} ^ { 2 } / \Gamma$ ; confidence 0.421
289. ; $A \in {\cal A} _ { n }$ ; confidence 0.421
290. ; $\Gamma \subset {\bf R} ^ { n }$ ; confidence 0.421
291. ; $f _ { k } \in L _ { p } ( G ) , g _ { k } \in L _ { q } ( G ) , \sum _ { k = 1 } ^ { \infty } \| f _ { k } \| \| g _ { k } \| < \infty,$ ; confidence 0.421
292. ; $\overline { \alpha } : P \rightarrow X$ ; confidence 0.421
293. ; $a _ { k \text{l} }$ ; confidence 0.421
294. ; $\Phi : \partial U \rightarrow E ^ { n + 1 } {\color{blue} \backslash} 0$ ; confidence 0.421
295. ; $\mathsf{P} ( X = 0 ) \leq \operatorname { exp } \left\{ \frac { \Delta } { 1 - \epsilon } \right\} \prod _ { A } ( 1 - \mathsf{E} I _ { A } ),$ ; confidence 0.421
296. ; $\Phi ^ { + } ( t _ { 0 } ) + \Phi ^ { - } ( t _ { 0 } ) = \frac { 1 } { \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t 0 },$ ; confidence 0.421
297. ; $b _ { p }$ ; confidence 0.421
298. ; $c \in \bf N$ ; confidence 0.421
299. ; $\operatorname { Vol } ( \overline { U M } ) = C _ { 1 } ( n ) \int _ { U ^ { + } \partial M } l ( v ) \langle v , N _ { x } \rangle d v d x.$ ; confidence 0.421
300. ; $h _ { 1 } \otimes \ldots \otimes h _ { n } \in H ^ { \otimes n }$ ; confidence 0.421
Maximilian Janisch/latexlist/latex/NoNroff/62. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/62&oldid=45854