User:Maximilian Janisch/latexlist/latex/NoNroff/61
List
1.
; $f ( \mathcal{A} ) = ( 2 \pi ) ^ { - k } \int _ { \mathbf{R} ^ { k } } e^ { i \xi \mathcal{A} } \hat { f } ( \xi ) d \xi$ ; confidence 0.458
2.
; $\lambda _ { 3 } = \left( \begin{array} { c c c } { 1 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 4 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 1 } \\ { 0 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 5 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { - i } \\ { 0 } & { 0 } & { 0 } \\ { i } & { 0 } & { 0 } \end{array} \right) , \lambda _ { 6 } = \left( \begin{array} { c c c } { 0 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { 1 } \\ { 0 } & { 1 } & { 0 } \end{array} \right),$ ; confidence 0.458
3.
; $K _ { 2 } F$ ; confidence 0.458
4.
; $0.0110100\dots$ ; confidence 0.458
5.
; $j \in \mathbf{N} \backslash \{ j _ { n_k } : k \in \mathbf{N} \}$ ; confidence 0.458
6.
; $a \in E$ ; confidence 0.458
7.
; $x \in \operatorname { sp } u$ ; confidence 0.458
8.
; $F ( \tau ) = \frac { \pi } { 2 } \int _ { 0 } ^ { \infty } P _ { ( i \tau - 1 ) / 2 } ( 2 x ^ { 2 } + 1 ) f ( x ) d x,$ ; confidence 0.458
9.
; $t = ( t _ { n } )$ ; confidence 0.458
10.
; $\mathbf{E}$ ; confidence 0.458
11.
; $h ^ { i } ( K _ { X } \bigotimes L ) = 0 , \quad i > 0.$ ; confidence 0.458
12.
; $( \frac { \partial } { \partial \lambda } ) [ u ( z , \lambda ) ( \lambda - \lambda _ { 2 } ) ] = z ^ { \lambda_2 } + \ldots ,$ ; confidence 0.458
13.
; $y _ { 1 } , \dots , y _ { m + 1}$ ; confidence 0.458
14.
; $J _ { n / 2} ( r ) = 0$ ; confidence 0.458
15.
; $\mathsf{P} ( i \in \Gamma _ { \mathbf{p} } ) = p _ { i }$ ; confidence 0.458
16.
; $h \in M$ ; confidence 0.458
17.
; $( F _ { \text{win} } f ) ( \omega , t ) = \int f ( s ) g ( s - t ) e ^ { - i \omega s } d s,$ ; confidence 0.457
18.
; $f = \sum _ { j } a _ { j} x_j$ ; confidence 0.457
19.
; $\operatorname { deg } \Delta$ ; confidence 0.457
20.
; $U \in \text{SGL} _ { n } ( \mathbf{Z} A )$ ; confidence 0.457
21.
; $( n _ { 1 } , \dots , n _ { k } )$ ; confidence 0.457
22.
; $\text{rank} ( A ) = k \geq p$ ; confidence 0.457
23.
; $L ^ { p }$ ; confidence 0.457
24.
; $\sigma i$ ; confidence 0.457
25.
; $\operatorname { char } ( X ) = \prod _ { i = 1 } ^ { s } f _ { i } ( T ) ^ { l _ { i } } \prod _ { j = 1 } ^ { t } \pi ^ { m _ { j } },$ ; confidence 0.457
26.
; $\mathbf{Q} ^ { \times }$ ; confidence 0.456
27.
; $\theta = ( \theta _ { 1 } , \dots , \theta _ { m } ) \in \Theta \subset \mathbf{R} ^ { m }$ ; confidence 0.456
28.
; $E _ { n + 1} ( \operatorname { cos } \theta ) =$ ; confidence 0.456
29.
; $\operatorname{lim} _ { \rightarrow } H ^ { p } ( U _ { \lambda } ; G ) = H ^ { p } ( x ; G )$ ; confidence 0.456
30.
; $- \frac { 1 } { 2 } \sum _ { i , j = 1 } ^ { n } \frac { \partial ^ { 2 } \mu _ { 0 } } { \partial k _ { i } \partial \dot { k } _ { j } } ( k _ { c } , R _ { c } ) \frac { \partial ^ { 2 } A } { \partial \xi _ { i } \partial \xi _ { j } } + l A | A | ^ { 2 }$ ; confidence 0.456
31.
; $L_1$ ; confidence 0.456
32.
; $h_\lambda = h _ { \lambda _ { 1 } } \ldots h _ { \lambda _ { l } }$ ; confidence 0.456
33.
; $\phi _ { v } : \operatorname { WC } ( A , k ) \rightarrow WC ( A , k _ { v } ),$ ; confidence 0.456
34.
; $( - z ) P _ { n } ( - z ) / Q _ { n } ( - z )$ ; confidence 0.456
35.
; $( f _ { n } ) _ { n = 1 } ^ { \infty } $ ; confidence 0.456
36.
; $D ^ { \mathbf{r} }$ ; confidence 0.456
37.
; $\{ z \in \mathbf{C} ^ { n } : 1 + \langle z , \zeta \rangle \neq 0 \}$ ; confidence 0.456
38.
; $U ^ { i }$ ; confidence 0.456
39.
; $f ( z ) = \frac { | a | } { a } \frac { z - a } { 1 - \overline { a } z } , \quad | a | < 1,$ ; confidence 0.456
40.
; $\mathsf{E} [ W _ { p } ] _ { \text{NP} } = \frac { 1 } { 2 ( 1 - \sigma _ { p - 1 } ) ( 1 - \sigma _ { p } ) } \sum _ { k = 1 } ^ { P } \lambda _ { k } b _ { k } ^ { ( 2 ) },$ ; confidence 0.456
41.
; $\mathcal{U} ( L )$ ; confidence 0.455
42.
; $S ( k ) = f ( - k ) / f ( k ) = e ^ { 2 i \delta ( k ) }$ ; confidence 0.455
43.
; $M _ { \lambda } = ( Q _ { \langle \lambda _ { i } , \lambda _ { j } \rangle } )$ ; confidence 0.455
44.
; $\operatorname { gcd } ( N _ { 2n } , D _ { 2n } ) = 1$ ; confidence 0.455
45.
; $\lambda = ( \lambda _ { 1 } , \ldots , \lambda _ { n } ) \in \Lambda ( n , r )$ ; confidence 0.455
46.
; $n \gg 1$ ; confidence 0.455
47.
; $\Gamma ^ { \prime } \vdash_{\mathcal{D}} \varphi$ ; confidence 0.455
48.
; $t \rightarrow \int _ { 0 } ^ { t } ( \partial _ { s } ^ { * } + \partial _ { s } ) 1 d s = \mathcal{S} ^ { - 1 } \left( \int _ { 0 } ^ { t } ( D _ { s } ^ { * } + D _ { s } ) \Omega d s \right),$ ; confidence 0.455
49.
; $| w _ { 1 } | \geq \ldots \geq | w _ { n } |$ ; confidence 0.455
50.
; $\zeta ^ { \gamma } = \zeta ^ { u }$ ; confidence 0.455
51.
; $\nabla : \otimes ^ { r } \mathcal{E} \rightarrow \otimes ^ { r+ 1 } \mathcal{E}$ ; confidence 0.455
52.
; $q_X$ ; confidence 0.455
53.
; $\lambda x _ { 1 } \ldots x _ { n } . M$ ; confidence 0.455
54.
; $R _ { \text{p} }$ ; confidence 0.455
55.
; $\overline{M}$ ; confidence 0.455
56.
; $T _ { E }$ ; confidence 0.455
57.
; $k \operatorname { log } a _ { m } \leq i \operatorname { log } a _ { n } \leq ( k + 1 ) \operatorname { log } a _ { m }$ ; confidence 0.455
58.
; $G _ { e } = \operatorname{SL} _ { 2 } ( \mathbf{Z} )$ ; confidence 0.455
59.
; $Q _ { s } ( R )$ ; confidence 0.455
60.
; $v _ { i } = a _ { i } ^ { k }$ ; confidence 0.455
61.
; $r = \operatorname { dim } \mathfrak{n}^-$ ; confidence 0.455
62.
; $h \in \operatorname{QS} (\mathbf{ T} , \mathbf{C} ) : = \cup _ { M \geq 1 } M$ ; confidence 0.455
63.
; $\| \nu \|$ ; confidence 0.455
64.
; $A _ { U } ( s | _ { U } ) = A _ { M } ( s ) | _ { U }$ ; confidence 0.455
65.
; $\operatorname { lim } _ { t \rightarrow \infty } \mathsf{E}\operatorname { h } ( Z ( t ) ) = \frac { \int _ { 0 } ^ { \infty } b ( u ) d u } { \int _ { 0 } ^ { \infty } \mathsf{P} ( T _ { 1 } > u ) d u } =$ ; confidence 0.454
66.
; $b _ { i }$ ; confidence 0.454
67.
; $K ^ { 2 \times }I$ ; confidence 0.454
68.
; $\phi _ { n } ( z ) = \frac { \Phi _ { n } ( z ) } { \| \Phi _ { n } \| _ { \mu } },$ ; confidence 0.454
69.
; $\mathbf{Z}_l$ ; confidence 0.454
70.
; $( \mathcal{A} - z I ) x = K J \varphi _ { - }$ ; confidence 0.454
71.
; $x \in V _ { \bar{0} }$ ; confidence 0.454
72.
; $\int p \overline { q } d \mu = \langle M ( n ) \hat { p } , \hat { q } \rangle$ ; confidence 0.454
73.
; $\rho ( x ) = N \int _ { \mathbf{R} ^ { n ( N - 1 ) } } | \Phi ( x , x _ { 2 } , \ldots , x _ { N } ) | ^ { 2 } d x _ { 2 } \ldots d x _ { N }.$ ; confidence 0.454
74.
; $\int _ { B _ { i } } d \Omega _ { n } = V _ { i n } \sim ( \overset{\rightharpoonup}{ V _ { n } } ) _ { i }$ ; confidence 0.454
75.
; $\operatorname{Ker} \varphi$ ; confidence 0.454
76.
; $L _ { s } ( E ^ { * } , E )$ ; confidence 0.454
77.
; $\varphi , \psi \in L ^ { 2 } ( \mathbf{R} ^ { n} )$ ; confidence 0.454
78.
; $\operatorname { ord } _ { s = m } L ( h ^ { i } ( X ) , s ) - \operatorname { ord } _ { s = m + 1 } L ( h ^ { i } ( X ) , s ) =$ ; confidence 0.454
79.
; $s _ { n } = 0$ ; confidence 0.453
80.
; $P ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.453
81.
; $S ( \theta ) \in V _ { q } ^ { p }$ ; confidence 0.453
82.
; $\dots +\left. \frac { n ! } { ( n + 1 ) \ldots 2 n } a _ { n } \right] = S$ ; confidence 0.453
83.
; $P ^ { \sharp } : T ^ { * } M \rightarrow T M$ ; confidence 0.453
84.
; $\text{ contr } ( W ( g ) \bigotimes \ldots \bigotimes W ( g ) ) =$ ; confidence 0.453
85.
; $\mathcal{E} _ { * }$ ; confidence 0.453
86.
; $\operatorname{CF} ( \zeta - z , w ) = \frac { ( n - 1 ) ! \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } w _ { k } d w [ k ] \wedge d \zeta } { \langle w , \zeta - z \rangle ^ { n } },$ ; confidence 0.453
87.
; $\mathcal{G}$ ; confidence 0.453
88.
; $\mathsf{S} ^ { 2 } \mathcal{E} \otimes \mathsf{S} ^ { 2 } \mathcal{E} \rightarrow \mathsf{A} ^ { 2 } \mathcal{E} \otimes \mathsf{A} ^ { 2 } \mathcal{E}$ ; confidence 0.452
89.
; $| q ( x ) | \leq \operatorname { const } / x ^ { \beta }$ ; confidence 0.452
90.
; $K _ { s } ( \overline { \sigma } ) \cap K _ { \operatorname{tot}S }$ ; confidence 0.452
91.
; $D ( f . \omega ) = f . D ( \omega )$ ; confidence 0.452
92.
; $[ \phi ( x _ { 1 } , \ldots , x _ { n } ) = g ( \mu z ( f ( x _ { 1 } , \ldots , x _ { n } , z ) = 0 ) ) ].$ ; confidence 0.452
93.
; $\operatorname { Ind } _ { { H } } ^ { G }$ ; confidence 0.452
94.
; $= { k }$ ; confidence 0.452
95.
; $\text{Alg Mod}^ { *S } \text{ IPC }$ ; confidence 0.452
96.
; $V _ { j } ^ { n } \leq \operatorname { max } \left( \operatorname { max } _ { 0 \leq j \leq J } V _ { j } ^ { 0 } , \operatorname { max } _ { 0 \leq m \leq n } V _ { 0 } ^ { m } , \operatorname { max } _ { 0 \leq m \leq n } V _ { j } ^ { m } \right),$ ; confidence 0.452
97.
; $q_n$ ; confidence 0.452
98.
; $k \geq l $ ; confidence 0.452
99.
; $f _ { \mathfrak{A} } ( k )$ ; confidence 0.451
100.
; $g : \mathbf{P} ^ { 1 } \rightarrow X$ ; confidence 0.451
101.
; $\{ n : a _ { n } = 0 \} \in D$ ; confidence 0.451
102.
; $n \not \equiv \pm 1$ ; confidence 0.451
103.
; $p ( a , t ) = \left\{ \begin{array} { l l } { p _ { 0 } ( a - t ) \frac { \Pi ( a ) } { \Pi ( a - t ) } } & { \text { if } a \geq t, } \\ { b ( t - a ) \Pi ( a ) } & { \text { if } a < t, } \end{array} \right.$ ; confidence 0.451
104.
; $( \widetilde { M } , \widetilde{g} )$ ; confidence 0.451
105.
; $u$ ; confidence 0.451
106.
; $X _ { 1 } , X _ { 2 } , \dots$ ; confidence 0.451
107.
; $V ( K _ { \text{p} } )$ ; confidence 0.451
108.
; $\dot { i } < n$ ; confidence 0.451
109.
; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } = I.$ ; confidence 0.451
110.
; $\mathcal{A} \phi$ ; confidence 0.451
111.
; $D ( \phi ) = 1 _ { Y } - \nabla f$ ; confidence 0.451
112.
; $V ^ { n }$ ; confidence 0.451
113.
; $| \lambda - a _ { i , i} | . | x _ { i } | \leq \sum _ { \substack{j = 1 \\ j \neq i }} ^ { n } | a _ { i , j} | . | x _ { j } | \leq r _ { i } ( A ) . | x _ { i } |,$ ; confidence 0.451
114.
; $a ^ { w } = \operatorname{Op} ( b )$ ; confidence 0.451
115.
; $( x _ { 1 } , \dots , x _ { n } ) \in \{ 0,1 \} ^ { n }$ ; confidence 0.450
116.
; $\mathcal{P} _ { \text{F} } ^ { \# } ( n )$ ; confidence 0.450
117.
; $\operatorname{SL} ( 2 , \mathbf{Q} )$ ; confidence 0.450
118.
; $H \in \mathbf{N}$ ; confidence 0.450
119.
; $\overline { \sigma } \in G ( K ) ^ { e }$ ; confidence 0.450
120.
; $\zeta \in Z _ { p }$ ; confidence 0.450
121.
; $\mathcal{R} ( t ) = \tau ^ { - 1 _ { t , v } } \circ R ( t ) \circ \tau _ { t , v }$ ; confidence 0.450
122.
; $y = \tilde { y }$ ; confidence 0.450
123.
; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { r ( \lambda ) })$ ; confidence 0.450
124.
; $( x _ { i } , \ldots , x _ { n } ) \in \{ 0,1 \} ^ { n }$ ; confidence 0.450
125.
; $\operatorname { Re } \int _ { C } ( \omega _ { 1 } , \dots , \omega _ { n } ) = ( 0 , \dots , 0 ).$ ; confidence 0.450
126.
; $x _ { i } + x _ { k }$ ; confidence 0.450
127.
; $X / Y$ ; confidence 0.450
128.
; $\mathcal{G} = \operatorname { Fun } _ { q } ( G ( k , n ) )$ ; confidence 0.450
129.
; $E ^ { \operatorname{TF} } ( N ) > \sum _ { j = 1 } ^ { K } E _ { \operatorname{atom} } ^ { \operatorname{TF} } ( N _ { j } , Z _ { j } ),$ ; confidence 0.450
130.
; $X := \Gamma X$ ; confidence 0.450
131.
; $s + T$ ; confidence 0.450
132.
; $a \otimes \hat { f } : = \int _ { - \infty } ^ { \infty } a ( x , \alpha , p - q ) \hat { f } ( q ) d q$ ; confidence 0.450
133.
; $f _ { 1 } , \ldots , f _ { m }$ ; confidence 0.449
134.
; $\{ e ^ { i \eta . y } \phi _ { m } ( y ; \eta ) \}$ ; confidence 0.449
135.
; $\mathbf{T}$ ; confidence 0.449
136.
; $\left( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \gamma \right) u = 0.$ ; confidence 0.449
137.
; $\mu _ { i }$ ; confidence 0.449
138.
; $\{ I_j \}$ ; confidence 0.449
139.
; $J _ { i j } > 0$ ; confidence 0.449
140.
; $x \mapsto e ^ { i t } e ^ { i p q / 2 } e ^ { i q x } f ( x + p )$ ; confidence 0.449
141.
; $\operatorname{ad} _ { q } \in L$ ; confidence 0.449
142.
; $\varphi : \Gamma ^ { q + 1 } \rightarrow \mathbf{C}$ ; confidence 0.449
143.
; $A \cap B =_{*} \emptyset$ ; confidence 0.449
144.
; $( A ^ { * } X ) _ { t } = \int _ { 0 } ^ { t } A H _ { s } . d B _ { s }$ ; confidence 0.449
145.
; $a_{i,j} ( x ) = a _ { j , i } ( x )$ ; confidence 0.448
146.
; $\left( \begin{array} { r r } { 0 } & { 0 } \\ { - \varepsilon K ( c , d ) } & { 0 } \end{array} \right).$ ; confidence 0.448
147.
; $\delta ( z ) = \operatorname { diag } ( z ^ { k _ { 1 } } , \ldots , z ^ { k _ { n } } )$ ; confidence 0.448
148.
; $= Z ^ { 2 } \rho _ { \text { atom } } ^ { \operatorname{TF} } ( Z ^ { 1 / 3 } x ; N = \lambda , Z = 1 ).$ ; confidence 0.448
149.
; $q = p , p ^ { 2 } , p ^ { 3 } , . .$ ; confidence 0.448
150.
; $x _ { 1 } < \ldots < x _ { n }$ ; confidence 0.448
151.
; $e _ { n } ( F _ { d } )$ ; confidence 0.448
152.
; $P \in N$ ; confidence 0.448
153.
; $| \lambda - a _ { i , i} | = r _ { i } ( A ) \text { for each } 1 \leq i \leq n.$ ; confidence 0.448
154.
; $\mu _ { x }$ ; confidence 0.448
155.
; $\mathbf{C} _ { + } : = \{ k : \operatorname { Im } k \geq 0 \}$ ; confidence 0.448
156.
; $P \in A$ ; confidence 0.448
157.
; $t _ { 1 } , \ldots , t _ { n }$ ; confidence 0.448
158.
; $z \in \mathbf{C} \backslash \mathbf{Z} _ { 0 }^- , \quad \mathbf{Z} _ { 0 } ^ { - } : = \{ 0 , - 1 , - 2 , \ldots \},$ ; confidence 0.448
159.
; $m ( P ) \geq c_0$ ; confidence 0.448
160.
; $= \sum _ { n \in \mathbf{Z} } \sum _ { k \geq 0 } \left( \begin{array} { c } { n } \\ { k } \end{array} \right) ( - 1 ) ^ { k } x _ { 1 } ^ { n - k } x _ { 2 } ^ { k } x _ { 0 } ^ { - n - 1 },$ ; confidence 0.448
161.
; $| U |$ ; confidence 0.448
162.
; $X \subset S ^ { n}$ ; confidence 0.447
163.
; $f \in L ^ { p } ( \mathcal{T} ^ { n } )$ ; confidence 0.447
164.
; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \rightarrow \frac { \int _ { - \infty } ^ { \infty } \alpha ^ { s ( x + \beta ) } e ^ { - \alpha ^ { s } } d N ( s ) } { \Gamma ( x + 1 ) \int _ { - \infty } ^ { \infty } \alpha ^ { s \beta } e ^ { - \alpha ^ { s } } d N ( s ) },$ ; confidence 0.447
165.
; $\operatorname{ind} T _ { \phi - \lambda } = - \text { wind } ( \phi - \lambda )$ ; confidence 0.447
166.
; $Z = \sum _ { S _ { 1 } = \pm 1 } \ldots \sum _ { S _ { N } = \pm 1 }$ ; confidence 0.447
167.
; $z ^ { \alpha } = z _ { 1 } ^ { \alpha _ { 1 } } \ldots z _ { n } ^ { \alpha _ { n } }$ ; confidence 0.447
168.
; $\operatorname { Fun } _ { q } ( M )$ ; confidence 0.447
169.
; $m = 0 , \pm 1 , \pm 2 , \dots$ ; confidence 0.447
170.
; $| \alpha | = \sum _ { l = 1 } ^ { d } \alpha _ { l }$ ; confidence 0.447
171.
; $\operatorname{p} = ( p _ { 1 } , \dots , p _ { n + 2} )$ ; confidence 0.447
172.
; $r_2$ ; confidence 0.447
173.
; $( W , J ^ { \prime } )$ ; confidence 0.447
174.
; $\psi ( P ) = \operatorname { exp } \left( \sum t _ { n } \Omega _ { n } \right) \phi \left( \sum t _ { n } \overset{\rightharpoonup}{ V } _ { n } , P \right) ,$ ; confidence 0.447
175.
; $\hat { A } = A \oplus B$ ; confidence 0.447
176.
; $\| T \| \leq 1$ ; confidence 0.447
177.
; $R_0 ( X , D ) \otimes \mathbf{Q}$ ; confidence 0.447
178.
; $a \leq x _ { 1 } < \ldots < x _ { m } \leq b$ ; confidence 0.447
179.
; $k \left[ 1 - S ( k ) + \frac { Q } { i k } \right] \in L ^ { 2 } ( \mathbf{R} ),$ ; confidence 0.447
180.
; $\{ b _ { j } ^ { n } : j = 0 , \dots , n \}$ ; confidence 0.447
181.
; $g \in G , X , Y \in \mathfrak { g }.$ ; confidence 0.446
182.
; $0 \leq a _ { 1 } < \ldots < a _ { k } \leq n - 1$ ; confidence 0.446
183.
; $Z \rightarrow \lambda _ { + } ^ { N } $ ; confidence 0.446
184.
; $\delta f ( x _ { 0 } , h )$ ; confidence 0.446
185.
; $d _ { i j}$ ; confidence 0.446
186.
; $\langle \mathcal{L} p , q \rangle _ { s } = \langle p , \mathcal{L} q \rangle _ { s }$ ; confidence 0.446
187.
; $d \alpha$ ; confidence 0.446
188.
; $\Theta = \left( \begin{array} { c c c } { \mathcal{A} } & { } & { K } & { J } \\ { \mathfrak { H } _ { + } \subset \mathfrak { H } \subset \mathfrak { H } _ { - } } & & { \square } & { \mathfrak { E } } \end{array} \right)$ ; confidence 0.446
189.
; $S ^ { \prime \prime } = S ^ { ( 2 ) }$ ; confidence 0.446
190.
; $\| u - u v \| _ { A _ { p } ( G ) } < \epsilon$ ; confidence 0.446
191.
; $\mathbf{T} _ { 1 }$ ; confidence 0.446
192.
; $X _ { n } = f ( Z _ { n } , \dots , Z _ { n + m} )$ ; confidence 0.446
193.
; $d \geq 2$ ; confidence 0.446
194.
; $\cup_ \lambda X_ \lambda$ ; confidence 0.446
195.
; $\widetilde { f }$ ; confidence 0.446
196.
; $\phi ( n ) = \sum _ { d | n } d \mu \left( \frac { n } { d } \right) .$ ; confidence 0.446
197.
; $a _ { 0 } + a _ { 1 } t + \ldots + a _ { n } t ^ { n }$ ; confidence 0.445
198.
; $\mathcal{K} = \mathcal{H} ^ { n }$ ; confidence 0.445
199.
; $S \subset T ^ { \prime }$ ; confidence 0.445
200.
; $l _ { j t } \leq x _ { j t } \leq u _ { j t };$ ; confidence 0.445
201.
; $\| f \| _ { H ^ { p } } ^ { p } : = \frac { 1 } { 2 \pi } \operatorname { sup } _ { r < 1 } \int _ { - \pi } ^ { \pi } | f ( r e ^ { i \vartheta } ) | ^ { p } d \vartheta$ ; confidence 0.445
202.
; $k \langle a , b , c , d \rangle $ ; confidence 0.445
203.
; $V = \oplus _ { n \in \mathbf{Z} } V _ { ( n ) }$ ; confidence 0.445
204.
; $\tilde{g} \in \mathsf{S} ^ { 2 } \mathcal{E}$ ; confidence 0.445
205.
; $\mathcal{U} _ { K } = K \otimes _\mathbf{Z} \mathcal{U} _ { \mathbf{Z} }$ ; confidence 0.445
206.
; $\mathbf{C} _ { - } : = \{ k : \operatorname { Im } k < 0 \}$ ; confidence 0.445
207.
; $U \# _j \Omega = U \bigcap \{ \operatorname { Im } z _ { k } \neq 0 : k \neq j \}.$ ; confidence 0.445
208.
; $P _ { 4 _ { 1 } } ( v , z ) - 1 = ( v ^ { - 1 } - v ) ^ { 2 } - z ^ { 2 } = - v ^ { - 2 } ( P _ { 3_1 } ( v , z ) - 1 ) = - v ^ { 2 } ( P _ { \overline{3}_1 } ( v , z ) - 1 )$ ; confidence 0.445
209.
; $2 ^ { O ( s ( n ) ) }$ ; confidence 0.445
210.
; $- \Delta _ { \operatorname{Dir} }$ ; confidence 0.445
211.
; $\{ P _ { \alpha _ { n } } , \theta \}$ ; confidence 0.445
212.
; $\mathbf{y} = ( y _ { 1 } , \dots , y _ { m } ) ^ { T }$ ; confidence 0.445
213.
; $x _ { j } ^ { \prime } \not\equiv 0$ ; confidence 0.445
214.
; $f ( X ) = a _ { n } X ^ { n } + a _ { n - 1 } X ^ { n - 1 } + \ldots + a _ { 0 }$ ; confidence 0.445
215.
; $v _ { p } ( n )$ ; confidence 0.445
216.
; $u _ { h } ^ { 0 }$ ; confidence 0.444
217.
; $G \in \mathcal{L}$ ; confidence 0.444
218.
; $b _ { j } ^ { n } ( x ) : = \left( \begin{array} { c } { n } \\ { j } \end{array} \right) x ^ { j } ( 1 - x ) ^ { n - j } , j = 0 , \ldots , n.$ ; confidence 0.444
219.
; $\text{l}u _ { + } - { k } ^ { 2 } u _ { + } = 0 , x \in \mathbf{R},$ ; confidence 0.444
220.
; $a \preceq b _ { 1 } \ldots b _ { n }$ ; confidence 0.444
221.
; $k = 0,1,2 , \dots$ ; confidence 0.444
222.
; $f = x ^ { n } + a _ { n - 1 } x ^ { n - 1 } + \ldots + a _ { 1 } x + a _ { 0 }$ ; confidence 0.444
223.
; $\sigma _ { 1 } \Phi A _ { 2 } - \sigma _ { 2 } \Phi A _ { 1 } = \widetilde { \gamma } \Phi,$ ; confidence 0.444
224.
; $g ( a , b ) \subseteq T$ ; confidence 0.444
225.
; $d \geq 3$ ; confidence 0.444
226.
; $\xi ^ { * }$ ; confidence 0.444
227.
; $( T - t _ { j } I ) ^ { r _ { j } } P _ { j } = 0 \quad ( j = 1 , \ldots , n );$ ; confidence 0.444
228.
; $\alpha = ( \alpha_ 0 , \dots , \alpha _ { m } )$ ; confidence 0.444
229.
; $x \mapsto \operatorname { gxg } ^ { - 1 }$ ; confidence 0.444
230.
; $R_l$ ; confidence 0.443
231.
; $D _ { n } ( x , a )$ ; confidence 0.443
232.
; $R \subset H _ { \mathcal{M} } ^ { 3 } ( X , \mathbf{Q} ( 2 ) )$ ; confidence 0.443
233.
; $E _ { [ m , s ] }$ ; confidence 0.443
234.
; $h _ { K } ( u ) : = \operatorname { max } \{ \langle x , u \rangle : x \in K \},$ ; confidence 0.443
235.
; $\operatorname{Mod} ^ { * S} { \mathcal{D} }$ ; confidence 0.443
236.
; $\rho _ { X } \circ \pi _ { Y } ( a ) = \rho _ { X } ( a )$ ; confidence 0.443
237.
; $\mu \in \mathcal{H} ( \mathbf{C} ^ { n } ) ^ { \prime }$ ; confidence 0.443
238.
; $\zeta _ { q + 1} , \dots , \zeta _ { r }$ ; confidence 0.443
239.
; $a _ { i j } \in \mathbf{R}$ ; confidence 0.443
240.
; $W_ { m } ^ { k } ( \Omega )$ ; confidence 0.443
241.
; $\operatorname{Hol} ( \mathbf{B} )$ ; confidence 0.443
242.
; $M_i$ ; confidence 0.443
243.
; $E _ { z _ { 0 } } ( x , R ) =$ ; confidence 0.443
244.
; $F B ( \sigma _ { g } , G )$ ; confidence 0.443
245.
; $\widetilde { N } = N _ { 0 } \times ( - 1 , + 1 )$ ; confidence 0.443
246.
; $\phi _ { 0 } , \phi _ { 1 } , \ldots$ ; confidence 0.443
247.
; $r g _ { 1 } \simeq g_2$ ; confidence 0.443
248.
; $K_ S ( w , z ) = [ 1 - S ( z ) \overline { S ( w ) } ] / ( 1 - z \overline { w } )$ ; confidence 0.443
249.
; $\hat { f } ( \alpha , p ) = \int _ { \operatorname { l}_{\alpha p} } f ( x ) d s : = R f$ ; confidence 0.443
250.
; $D _ { k } = U ( \mathfrak{a} ) \otimes _ { \mathbf{C} } \wedge ^ { k } ( \mathfrak{a} )$ ; confidence 0.442
251.
; $Z^k$ ; confidence 0.442
252.
; $a _ { 1 } ( S _ { n } - S ) + a _ { 2 } ( S _ { n + 1 } - S ) = 0$ ; confidence 0.442
253.
; $z \operatorname{sinh} w/ ( z ^ { 2 } - 2 z \operatorname { cosh } w + 1 )$ ; confidence 0.442
254.
; $k = \mathbf{C}$ ; confidence 0.442
255.
; $X _ { 1 } , \dots , X _ { n } , \dots$ ; confidence 0.442
256.
; $\| B ( x , y ) \| _ { + } \leq c \sum _ { j = 1 } ^ { \infty } \| \lambda _j \varphi_j ( x ) \| _ { + } =$ ; confidence 0.442
257.
; $L = \left( \begin{array} { c c c c c } { m _ { 1 } } & { m _ { 2 } } & { \ldots } & { \ldots } & { m _ { k } } \\ { p _ { 1 } } & { 0 } & { \ldots } & { \ldots } & { 0 } \\ { 0 } & { p _ { 2 } } & { 0 } & { \ldots } & { 0 } \\ { \vdots } & { \square } & { \ddots } & { \square } & { \vdots } \\ { 0 } & { \ldots } & { 0 } & { p _ { k - 1 } } & { 0 } \end{array} \right),$ ; confidence 0.442
258.
; $P _ { m , K }$ ; confidence 0.442
259.
; $\infty _-$ ; confidence 0.442
260.
; $\mathcal{I} _ { S }$ ; confidence 0.442
261.
; $E = ( E _ { x } , E _ { y } , E _ { z } )$ ; confidence 0.442
262.
; $G _ { \operatorname{inn} } \triangleleft G$ ; confidence 0.442
263.
; $\langle D | f \rangle = ( - 1 ) ^ { | f | } - z ^{ | f | - \operatorname { com } ( D _ { f , 1 } ) - \operatorname { com } ( D _ { f , 2 } ) + \operatorname { com } ( D )}$ ; confidence 0.442
264.
; $( \tilde { G } , \tilde { c } )$ ; confidence 0.442
265.
; $( K _ { ( 1 ) } , \dots , K _ { ( n ) } )$ ; confidence 0.442
266.
; $R = \sum a _ { i } \otimes b _ { i }$ ; confidence 0.441
267.
; $= \int _ { \Omega } \int _ { \mathbf{R} ^ { d } } \varphi ( x , \lambda ) d \nu _ { x } ( \lambda ) d x,$ ; confidence 0.441
268.
; $\phi _ { n } ( z ) = \kappa _ { n } f _ { n } ( z ) +\dots $ ; confidence 0.441
269.
; $x \leftrightarrow \top $ ; confidence 0.441
270.
; $f ^ { \rho } = a _ { 1 } f _ { 1 } + \ldots + a _ { m } f _ { m }.$ ; confidence 0.441
271.
; $\square ^ { '' } \Gamma$ ; confidence 0.441
272.
; $H \times C ^ { o }$ ; confidence 0.441
273.
; $Y_f$ ; confidence 0.441
274.
; $l \geq n$ ; confidence 0.441
275.
; $u = e ^ { i k \alpha x } + v , \operatorname { lim } _ { r \rightarrow \infty } \int _ { | s | = r } \left| \frac { \partial v } { \partial | x | } - i k v \right| ^ { 2 } d s = 0.$ ; confidence 0.441
276.
; $\mathcal{S} _ { p }$ ; confidence 0.441
277.
; $P \cup R$ ; confidence 0.441
278.
; $\int _ { - \infty } ^ { \infty } | f | | r | d x < \infty$ ; confidence 0.441
279.
; $d \geq 1$ ; confidence 0.441
280.
; $g ( \overline { u } _ { 1 } ) = v ^ { * } = \overline { q } = v _ { \text{M} }$ ; confidence 0.440
281.
; $A = Z$ ; confidence 0.440
282.
; $Q _ { n } ( T _ { g } ( z ) ) - q ^ { - n }$ ; confidence 0.440
283.
; $G = ( \square _ { B } ^ { A^* } )$ ; confidence 0.440
284.
; $\overline{b}$ ; confidence 0.440
285.
; $I _ { x }$ ; confidence 0.440
286.
; $\lambda = \frac { ( 1 - \alpha ) ( k + d n _ { k } ) } { ( k + cn _ { k } ) }$ ; confidence 0.440
287.
; $\xi _ { 1 } , \dots , \xi _ { n + 1}$ ; confidence 0.440
288.
; $C ^ { * _ E} ( S ) \otimes _ { \delta } \mathcal{C} _ { 0 } ( S )$ ; confidence 0.440
289.
; $\sum _ { j \geq 1 } | e _ { j } | ^ { \gamma } \leq L _ { \gamma , n } \int _ { \mathbf{R} ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x$ ; confidence 0.440
290.
; $D = \sum _ { k = 1 } ^ { r } a _ { k } D _ { k }$ ; confidence 0.440
291.
; $( S _ { n + m + 1 } )$ ; confidence 0.440
292.
; $K_*$ ; confidence 0.440
293.
; $\mathbf{k} : = \{ K ( a , b ) \} _ { \text{span} }$ ; confidence 0.440
294.
; $x \in \mathbf{R} ^ { n }$ ; confidence 0.440
295.
; $L _ { k } ( \mathbf{a} )$ ; confidence 0.440
296.
; $B \rtimes H \ltimes B ^ { * }$ ; confidence 0.440
297.
; $e ^ { n _ \alpha + 1}$ ; confidence 0.439
298.
; $P ^ { \mathcal{A} }$ ; confidence 0.439
299.
; $Q \in \mathbf{N} ^ { m }$ ; confidence 0.439
300.
; $- \sum _ { k = 1 } ^ { s } e _ { k } D _ { k }$ ; confidence 0.439
Maximilian Janisch/latexlist/latex/NoNroff/61. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/61&oldid=45939