User:Maximilian Janisch/latexlist/latex/NoNroff/57
List
1. ; $\operatorname{Prim}( U ( \mathfrak{g} ) )$ ; confidence 0.525
2. ; $z ( a ) = 0 = z ( b )$ ; confidence 0.524
3. ; $\psi = ( \text { id } \otimes \varphi ) \circ L : A \rightarrow \operatorname { Fun } _ { q } ( G )$ ; confidence 0.524
4. ; $B _ { m } = I _ { m }$ ; confidence 0.524
5. ; $h _ { K }$ ; confidence 0.524
6. ; $\overline { d } _{(n)} ( A ) = \operatorname { per } ( A ) \geq \overline { d } _ { \lambda } ( A ).$ ; confidence 0.524
7. ; $\psi _ { + }$ ; confidence 0.524
8. ; $w \in T V$ ; confidence 0.524
9. ; $n ( \epsilon , F _ { d } ) = \operatorname { min } \{ n : e _ { n} ( F _ { d } ) \leq \epsilon \}.$ ; confidence 0.524
10. ; $\theta _ { X }$ ; confidence 0.524
11. ; $M = \mathcal{U} _ { \mathbf{Z} } v ^ { + }$ ; confidence 0.524
12. ; $\lceil n / 2 \rceil $ ; confidence 0.523
13. ; $\frac { d u } { d t } = A ( t , v ) u + f ( t , v ) , 0 < t \leq T , u ( 0 ) = u_0.$ ; confidence 0.523
14. ; $( \varphi _ { j } ) _ { j \in \mathbf{N} }$ ; confidence 0.523
15. ; $Z = Z_j$ ; confidence 0.523
16. ; $X = ( X _ { 1 } , \ldots , X _ { n } )$ ; confidence 0.523
17. ; $\mathcal{L} _ { X } = [ i_{X} , d ] = i_{X} d + d i _{X}$ ; confidence 0.523
18. ; $j = 0 , \ldots , 2 N - 1$ ; confidence 0.523
19. ; $uv$ ; confidence 0.523
20. ; $= \Lambda ^ { m } + D _ { 1 } \Lambda ^ { m - 1 } + \ldots + D _ { m - 1 } \Lambda + D _ { m } , D _ { k } \in C ^ { n \times n } , k = 1 , \ldots , m,$ ; confidence 0.523
21. ; $N _ { 2 } / N _ { 1 }$ ; confidence 0.523
22. ; $\operatorname{supp} f \subset K$ ; confidence 0.523
23. ; $R ^ { - 1 } - Z ^ { * } R ^ { - 1 } Z = \widetilde{ H } \square ^ { * } J \widetilde { H }$ ; confidence 0.523
24. ; $Q ( A )$ ; confidence 0.523
25. ; $\sum _ { i = 1 } ^ { n } \eta ( \overset{\rightharpoonup} { x } _ { i } , r _ { i } ) \overset{\rightharpoonup}{ x } _ { i } = \overset{\rightharpoonup}{ 0 },$ ; confidence 0.523
26. ; $\tilde{x} ( z ) z ^ { n - 1 } = h ( z ) / g ( z )$ ; confidence 0.523
27. ; $D ( 2 n_1 ) \times D ( 2 n_2 ) ^ { \text{l} }$ ; confidence 0.523
28. ; $\operatorname{p} \in P$ ; confidence 0.523
29. ; $\overline{ D }$ ; confidence 0.522
30. ; $\lambda ^ { \operatorname{Fm} } : \operatorname{Fm} ^ { n } \rightarrow \operatorname{Fm}$ ; confidence 0.522
31. ; $h _ { \beta }$ ; confidence 0.522
32. ; $\left( \begin{array} { c } { v _ { 1 , t }} \\ { \vdots } \\ { v _ { k , t } } \end{array} \right).$ ; confidence 0.522
33. ; $a , b \in G$ ; confidence 0.522
34. ; $\forall \{ u_j : j \in J \} \subset L ^ { X }$ ; confidence 0.522
35. ; $H _ { S } ^ { 0 } ( D ) =\operatorname{ ker} D$ ; confidence 0.522
36. ; $g ( \overline { u } _ { 1 } ) = c ^ { T } x ^ { ( l ) } + ( A _ { 1 } x ^ { ( l ) } - b _ { 1 } ) ^ { T } \overline { u _1}$ ; confidence 0.522
37. ; $T > t$ ; confidence 0.522
38. ; $n = 1 , \infty$ ; confidence 0.522
39. ; $\mathcal{R} ^ { \infty } \rightarrow \ldots \rightarrow \mathcal{R} ^ { m } \rightarrow \ldots \rightarrow \mathcal{R} ^ { 0 }$ ; confidence 0.522
40. ; $F _ { s } ( t , x _ { 1 } , \ldots , x _ { s } ) =$ ; confidence 0.522
41. ; $= \int _ { \mathbf{R} ^ { 2 n } } \hat { a } ( \Xi ) \operatorname { exp } ( 2 i \pi \Xi . M ) d \Xi , $ ; confidence 0.522
42. ; $a , b \in R$ ; confidence 0.522
43. ; $G ^ { \prime }$ ; confidence 0.522
44. ; $\operatorname{QS} ( \mathbf{T} )$ ; confidence 0.522
45. ; $\partial \Omega _ { r }$ ; confidence 0.521
46. ; $\Omega ^ { * }$ ; confidence 0.521
47. ; $x ^ { 0 } \in \mathbf{R} ^ { n}$ ; confidence 0.521
48. ; $\alpha _ { l } \leq k $ ; confidence 0.521
49. ; $\mathsf{E} | Y _ { \infty } - Y _ { T } | \leq c \mathsf{P} [ T < \infty ]$ ; confidence 0.521
50. ; $U _ { 1 }$ ; confidence 0.521
51. ; $\forall x \forall y ( \forall z ( z \in x \leftrightarrow z \in y ) \rightarrow x = y ).$ ; confidence 0.521
52. ; $T _ { c } = 2 J / k _ { B }$ ; confidence 0.521
53. ; $L_0$ ; confidence 0.521
54. ; $f _ { \text{w} }$ ; confidence 0.521
55. ; $f : \overline { \Omega } \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.521
56. ; $\{ \ldots \}$ ; confidence 0.521
57. ; $\{ g_j\}$ ; confidence 0.521
58. ; $\mathsf{P} ( X _ { i } | \gamma _ { i } )$ ; confidence 0.521
59. ; $\mathcal{P} ^ { \# _\mathcal{ P}}$ ; confidence 0.521
60. ; $X _ { i } \in \mathfrak{a}$ ; confidence 0.521
61. ; $W \equiv \lambda x . F ( x x )$ ; confidence 0.521
62. ; $R _ { n } < 1 - \operatorname { log } n / ( 3 n )$ ; confidence 0.520
63. ; $\| I _ { 1 } ( f ) - U ^ { i } ( f ) \| _ { 0 }$ ; confidence 0.520
64. ; $\models _ { \mathcal{L} } \subseteq \operatorname{Mod} \times \operatorname{Fm}$ ; confidence 0.520
65. ; $Nh$ ; confidence 0.520
66. ; $H f ( x ) = \operatorname { lim } _ { \epsilon \downarrow 0} \int _ { | t | > \epsilon } f ( x - t ) / t d t$ ; confidence 0.520
67. ; $t \mapsto t + T$ ; confidence 0.520
68. ; $T_g$ ; confidence 0.520
69. ; $\mathbf{Z} _ { p }$ ; confidence 0.520
70. ; $\varepsilon \mapsto ( \varepsilon , \ldots , \varepsilon )$ ; confidence 0.520
71. ; $x _ { k} ^ { \prime }$ ; confidence 0.520
72. ; $t \leq t_1$ ; confidence 0.520
73. ; $\mathcal{C} ( K )$ ; confidence 0.520
74. ; $\| f ( x ) - a ( x ) \| \leq \varepsilon$ ; confidence 0.520
75. ; $V ( \widetilde{Z} _ { p } ) \neq \emptyset$ ; confidence 0.520
76. ; $v ^ { H }$ ; confidence 0.520
77. ; $i , j$ ; confidence 0.520
78. ; $\pi : X \rightarrow X // G$ ; confidence 0.520
79. ; $a _ { k } = n$ ; confidence 0.520
80. ; $\alpha _ { j } ( D _ { i } ) = \delta _ { i j }$ ; confidence 0.519
81. ; $n ^ { - 1 } \mathbf{M} _ { \mathsf{E} }$ ; confidence 0.519
82. ; $P_n$ ; confidence 0.519
83. ; $A _ { 0 } \subset \mathbf{R} ^ { n }$ ; confidence 0.519
84. ; $\mathsf{E} B _ { s } B _ { t } = \operatorname { min } ( s , t )$ ; confidence 0.519
85. ; $Q _ { n } ^ { * } w \rightarrow w$ ; confidence 0.519
86. ; $h _ { i j } = 0$ ; confidence 0.519
87. ; $\lambda \in S _ { \theta _ { 0 } }$ ; confidence 0.519
88. ; $\sum m \underline { \square } _ { n } ( h ) h$ ; confidence 0.519
89. ; $\neq \left( \begin{array} { c c c c } { 9 } & { 2 } & { 3 } & { 6 } \\ { 7 } & { 1 } & { 4 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 2 } & { 3 } & { 9 } & { 6 } \\ { 4 } & { 1 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right).$ ; confidence 0.519
90. ; $\gamma \operatorname{mod} \Gamma ^ { p^m } \mapsto \gamma \operatorname { mod } \Gamma ^ { p ^ { n } }$ ; confidence 0.519
91. ; $t \in Q_0$ ; confidence 0.519
92. ; $C _ { \delta } = \{ z : | \operatorname { Im } z | < \delta ( | \operatorname { Re } { z | } + 1 ) \}$ ; confidence 0.519
93. ; $\Sigma _ { g }$ ; confidence 0.519
94. ; $\mathfrak { X } ( M , P )$ ; confidence 0.519
95. ; $F = \operatorname { diag } \{ f _ { 0 } , \dots , f _ { n - 1 } \}$ ; confidence 0.519
96. ; $\omega ^ { n} \neq \omega$ ; confidence 0.519
97. ; $\mu _ { \operatorname{d} }$ ; confidence 0.519
98. ; $\alpha _ { 1 } ^ { n _ { 1 } } , \dots , \alpha _ { d } ^ { n _ { d } }$ ; confidence 0.519
99. ; $x \in \mathbf{R} ^ { 4 }$ ; confidence 0.519
100. ; $P _ { \nu } + R _ { \nu } = 0 , \quad \nu = 1,2 , \dots ,$ ; confidence 0.519
101. ; $[ k ^ { p } ( a _ { 1 } , \dots , a _ { s } ) : k ^ { p } ] = p ^ { s }$ ; confidence 0.519
102. ; $\mu _ { 1 } , \dots , \mu _ { m }$ ; confidence 0.519
103. ; $Q _ { n } ( f ) = \sum _ { i = 1 } ^ { n } c _ { i } f ( x _ { i } )$ ; confidence 0.518
104. ; $\tau \notin \operatorname{Wh} ^ { * } ( \pi )$ ; confidence 0.518
105. ; $\mathbf{Q} ( \zeta ( p ) )$ ; confidence 0.518
106. ; $\mathcal{D} \otimes \mathcal{D} = \mathbf{R} [ x , y ] / \langle x ^ { 2 } , y ^ { 2 } \rangle$ ; confidence 0.518
107. ; $j_\gamma : B O _ { r } \rightarrow B O _ { r + 1}$ ; confidence 0.518
108. ; $( \overset{\rightharpoonup} { n } . \nabla \phi ) = U \overset{\rightharpoonup}{ n } . \overset{\rightharpoonup}{ x }.$ ; confidence 0.518
109. ; $\frac { d C _ { j } } { d x } ( x _ { k } ) = \left\{ \begin{array} { l l } { \frac { 1 } { 6 } ( 1 + 2 N ^ { 2 } ) } & { \text { for } j = k = 0 ,} \\ { - \frac { 1 } { 6 } ( 1 + 2 N ^ { 2 } ) } & { \text { for } j = k = N, } \\ { - \frac { x _ { j } } { 2 ( 1 - x _ { j } ^ { 2 } ) } } & { \text { for } j = k , 0 < j < N ,} \\ { ( - 1 ) ^ { j + k } \frac { \bar{c} _ { k } } { \bar{c} _ { j } ( x _ { k } - x _ { j } ) } } & { \text { for } j \neq k, } \end{array} \right.$ ; confidence 0.518
110. ; $( 1 + \sqrt { 5 } ) / 2$ ; confidence 0.518
111. ; $x_{+}$ ; confidence 0.518
112. ; $\alpha _ { e} ( z ) \neq 0$ ; confidence 0.518
113. ; $\leq 1$ ; confidence 0.518
114. ; $m ( X ) \leq C ( 1 + G _ { X } ^ { \sigma } ( X - Y ) ) ^ { N } m ( Y ),$ ; confidence 0.518
115. ; $G _ { q } , U _ { q } ( \mathfrak { g } )$ ; confidence 0.518
116. ; $y ^ { 1 } , \dots , y ^ { q }$ ; confidence 0.518
117. ; $= \prod _ { p \in P } ( 1 + | p | ^ { - z } + | p | ^ { - 2 z } + \ldots ) =$ ; confidence 0.517
118. ; $f _ { 0 } , f _ { 1 } , \dots$ ; confidence 0.517
119. ; $P _ { \mathcal{E}}$ ; confidence 0.517
120. ; $w _ { L _ { - } } = w _ { L _ { + } } * w _ { L _ { 0 } }$ ; confidence 0.517
121. ; $A _ { n } \in\mathcal{ A} _ { n }$ ; confidence 0.517
122. ; $F \subset \mathbf{P} ^ { n - 1 }$ ; confidence 0.517
123. ; $^ { * } F _ { A } = - F _ { A }.$ ; confidence 0.517
124. ; $\operatorname{wind}( a - z )$ ; confidence 0.517
125. ; $S _ { 1 } , S _ { 2 } , \ldots$ ; confidence 0.517
126. ; $( s , \dots , s , B _ { m } )$ ; confidence 0.517
127. ; $P _ { n , \theta _ { n } }$ ; confidence 0.517
128. ; $f : \mathbf{R} ^ { m } \rightarrow \mathbf{R}$ ; confidence 0.517
129. ; $x = [ a , b ]$ ; confidence 0.517
130. ; $Y ( \mathbf{1} , x ) = 1$ ; confidence 0.517
131. ; $ \geq N$ ; confidence 0.517
132. ; $\mu_Z$ ; confidence 0.517
133. ; $j = 0 , \dots , n$ ; confidence 0.517
134. ; $\mu _ { p } ( K / k ) = \mu ( X )$ ; confidence 0.517
135. ; $v = d u / d t$ ; confidence 0.516
136. ; $G \times F$ ; confidence 0.516
137. ; $\operatorname { max } \{ | x | , | y | , p _ { 1 } ^ { z _ { 1 } } \ldots p _ { s } ^ { z _ { s } } \}$ ; confidence 0.516
138. ; $P _ {\overline{U+V}}$ ; confidence 0.516
139. ; $T _ { \mathcal{P} }$ ; confidence 0.516
140. ; $g = E d x \bigotimes d x +$ ; confidence 0.516
141. ; $J _ { n } ( z ) = \frac { 1 } { \pi } \int _ { 0 } ^ { \pi } \operatorname { cos } ( n \theta - z \operatorname { sin } \theta ) d \theta +$ ; confidence 0.516
142. ; $X ^ { \prime } = L _ { 1 } ^ { \prime } \cap L _ { 2 } ^ { \prime } = L _ { 2 } ^ { \prime } \cap L _ { 3 } ^ { \prime } = L _ { 1 } ^ { \prime } \cap L _ { 3 } ^ { \prime }$ ; confidence 0.516
143. ; $\mu ( U , V ) = ( - 1 ) ^ { d } q ^ { d ( d - 1 ) / 2 },$ ; confidence 0.516
144. ; $x _ { 1 } \leq x \leq x _ { m }$ ; confidence 0.516
145. ; $j = 1,2 , \dots$ ; confidence 0.516
146. ; $x _ { m }$ ; confidence 0.516
147. ; $\mathbf{F} _ { q } [ x ]$ ; confidence 0.516
148. ; $\operatorname{PredSucc}( x ) = \{ y : y <_{P} z \ \text { for allz } \in \operatorname { Succ } ( x ) \}$ ; confidence 0.516
149. ; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516
150. ; $\sum _ { q = 1 } ^ { \infty } \varphi ( q ) f ( q )$ ; confidence 0.516
151. ; $j = 1 , \dots , m - 1$ ; confidence 0.516
152. ; $k = 0 , \dots , n$ ; confidence 0.516
153. ; $\operatorname { log } L ( \theta | Y _ { aug } )$ ; confidence 0.516
154. ; $\mathcal{S} \text{q} ^ { 0 } = \operatorname{Id}$ ; confidence 0.516
155. ; $\operatorname { log } _ { \omega } 0 = \infty$ ; confidence 0.516
156. ; $\mathcal{B} _ { j k \text{l}} ^ { i }$ ; confidence 0.516
157. ; $G _ { n } ( f ( k , n ) ) = \operatorname { max } \left\{ k ^ { \prime } : f _ { ( k ^ { \prime } , n ) } = f ( k , n ) \right\}$ ; confidence 0.516
158. ; $\operatorname { inf } _ { u \in \mathcal{A} } I ( u )$ ; confidence 0.516
159. ; $\subset \mathbf{R} ^ { m }$ ; confidence 0.515
160. ; $\varphi _ { 2 } + i \widetilde { \varphi } _ { 2 }$ ; confidence 0.515
161. ; $\Delta ( z _ { 1 } , z _ { 2 } ) = \operatorname { det } \left[ \begin{array} { c c } { E _ { 1 } z _ { 1 } - A _ { 1 } } & { E _ { 2 } z _ { 2 } - A _ { 2 } } \\ { E _ { 3 } z _ { 1 } - A _ { 3 } } & { E _ { 4 } z _ { 2 } - A_4 } \end{array} \right] =$ ; confidence 0.515
162. ; $\langle \lambda | G ( z ) \phi ) = \frac { 1 } { z - \lambda } \langle \lambda | V \phi ) ( \phi , G ( z ) \phi ).$ ; confidence 0.515
163. ; $- c _ { 1 } + c _ { 3 } d ^ { \nu } \operatorname { log } ( \rho / | \omega | )$ ; confidence 0.515
164. ; $\mathbf{R} = \text{Dbx} _ { f }$ ; confidence 0.515
165. ; $\left( \begin{array} { c c c } { x _ { 11 } } & { \dots } & { x _ { 1 n} } \\ { \vdots } & { \square } & { \vdots } \\ { x _ { p 1 } } & { \dots } & { x _ { p n} } \end{array} \right),$ ; confidence 0.515
166. ; $\{ f _ { j _ { 1 } } , \dots , f _ { j _ { m } } \}$ ; confidence 0.515
167. ; $T _ { \operatorname{prod} } \times T _ { m }$ ; confidence 0.515
168. ; $f ( X ^ { \prime } , X ^ { \prime } Y ^ { \prime } ) = X ^ { \prime d } f ^ { \prime } ( X ^ { \prime } , Y ^ { \prime } )$ ; confidence 0.515
169. ; $\Delta _ { \varepsilon } ( t ) = ( 1 - | t | / \varepsilon ) _ { + }$ ; confidence 0.515
170. ; $\phi$ ; confidence 0.515
171. ; $\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$ ; confidence 0.515
172. ; $\mathcal{D} \subset \mathbf{C} ^ { n }$ ; confidence 0.515
173. ; $\varepsilon _ { x } ^ { A } ( s ) = \widehat { R } _ { s } ^ { A } ( x )$ ; confidence 0.515
174. ; $d P _ { n } ^ { \prime } / d P_n$ ; confidence 0.515
175. ; $n \geq N_0$ ; confidence 0.515
176. ; $\Delta \in C ^ { n \times n }$ ; confidence 0.515
177. ; $q ( x ) \not\equiv 0$ ; confidence 0.515
178. ; $\tau \rightarrow \infty$ ; confidence 0.515
179. ; $\langle T , \phi \rangle$ ; confidence 0.515
180. ; $E _ { \operatorname{atom} } ^ { \operatorname{TF} } ( N _ { j } , Z _ { j } )$ ; confidence 0.515
181. ; $( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { \mathbf{N} }$ ; confidence 0.515
182. ; $K ( s _ { r } )$ ; confidence 0.515
183. ; $\supset , \neg$ ; confidence 0.515
184. ; $k \in L ^ { 1 } ( \mathbf{R} )$ ; confidence 0.515
185. ; $U _ { N } ^ { ( k ) } ( x )$ ; confidence 0.514
186. ; $R = \{ r _ { 1 } , \dots , r _ { m } \}$ ; confidence 0.514
187. ; $j \in \{ 1 , \dots , m \}$ ; confidence 0.514
188. ; $g b = q b $ ; confidence 0.514
189. ; $K ^ { 2 } \swarrow L ^ { 3 } \searrow \operatorname{pt}$ ; confidence 0.514
190. ; $P = ( X _ { P } , < _ { P } )$ ; confidence 0.514
191. ; $v \in F ( u )$ ; confidence 0.514
192. ; $\widehat{u}$ ; confidence 0.514
193. ; $R ( I )$ ; confidence 0.514
194. ; $0 \leq i \leq J$ ; confidence 0.514
195. ; $Z ( a g a ^ { - 1 } , a h a ^ { - 1 } ; z ) = Z ( g , h ; z )$ ; confidence 0.514
196. ; $f ( z , \tau ) / \tau$ ; confidence 0.514
197. ; $\| x + y \| \leq \| x \| + \| y \|$ ; confidence 0.514
198. ; $f = \int _ { \partial D } f \bigwedge K _ { q } - \overline { \partial _ { z } } \int f \bigwedge K _ { q- 1 } + \int _ { D } \overline { \partial } f \bigwedge K _ { q }.$ ; confidence 0.514
199. ; $N ^ { \prime } / L ^ { \prime }$ ; confidence 0.514
200. ; $X ^ { G } \rightarrow X ^ { h G }$ ; confidence 0.514
201. ; $\gamma : \mathcal{E}_{*} \rightarrow \mathcal{E}$ ; confidence 0.514
202. ; $\Lambda = \operatorname { diag } \{ \lambda _ { 1 } , \ldots , \lambda _ { n } \}$ ; confidence 0.514
203. ; $K ( \Omega ) = \int _ { \lambda \bigcap \Omega \neq \phi } d \omega ( \lambda ),$ ; confidence 0.514
204. ; $\operatorname{BMO}$ ; confidence 0.514
205. ; $x \mapsto x ^ { q }$ ; confidence 0.514
206. ; $v _ { n+1 } = A v _ { n}$ ; confidence 0.514
207. ; $L _ { \mathbf{C} } ^ { 1 } ( G )$ ; confidence 0.513
208. ; $( L ^ { H } , w ^ { H } )$ ; confidence 0.513
209. ; $\mathcal{I} ( \theta )$ ; confidence 0.513
210. ; $p _ { m } ^ { \alpha , \beta }$ ; confidence 0.513
211. ; $\frac { \Gamma _ { p } \left[ \frac { \langle n + m + p - 1 \rangle} { 2 } \right] } { \pi ^ { m p / 2 } \Gamma _ { p } ( ( n + p - 1 ) / 2 ) } | \Sigma | ^ { - m / 2 } | \Omega | ^ { - p / 2 } \times$ ; confidence 0.513
212. ; $a \in \widetilde{\mathbf{Z}} ^ { n}$ ; confidence 0.513
213. ; $H _ { g }$ ; confidence 0.513
214. ; $H ^ { i } ( \mathfrak{a} , M )$ ; confidence 0.513
215. ; $( f \in H _ { c } ( D ) )$ ; confidence 0.513
216. ; $\xi ( f . g ) = \xi ( f ) g + f . \xi ( g ) + \xi ( f ) . \xi ( g ),$ ; confidence 0.513
217. ; $Q _ { n } y = \sum _ { i = 1 } ^ { n } ( y , \psi _ { i } ) \psi _ { i }$ ; confidence 0.513
218. ; $e _ { j } * e _ { k } = \sum _ { l = 1 } ^ { 8 } ( \sqrt { 3 } d _ { j k l } - f _ { j k l } ) e _ { l }.$ ; confidence 0.513
219. ; $\gamma_3$ ; confidence 0.513
220. ; $A = B / ( X _ { 1 } , \dots , X _ { d } ) \bigcap ( Y _ { 1 } , \dots , Y _ { d } ),$ ; confidence 0.513
221. ; $\operatorname{supp} \phi_{j} \subset K$ ; confidence 0.513
222. ; $u ^ { \prime }$ ; confidence 0.513
223. ; $v _ { i } > 0$ ; confidence 0.513
224. ; $f _ { Y } ( Y )$ ; confidence 0.513
225. ; $[ L : K ] = d.e.f.g$ ; confidence 0.512
226. ; $\rho _ { \varepsilon }$ ; confidence 0.512
227. ; $y _ { c }$ ; confidence 0.512
228. ; $\rho : \operatorname { Gal } ( N / K ) \rightarrow G l _ { n } ( C )$ ; confidence 0.512
229. ; $\widehat { \chi }_{K}$ ; confidence 0.512
230. ; $U_i$ ; confidence 0.512
231. ; $J = [ a, b ] \subset \mathbf{R}$ ; confidence 0.512
232. ; $m = 1,2 , \dots$ ; confidence 0.512
233. ; $Z = \cup _ { p = 1 } ^ { \aleph _ { 0 } } Z _ { p }$ ; confidence 0.512
234. ; $\operatorname { lim } _ { n \rightarrow \infty } \left[ a _ { 0 } + \frac { n } { n + 1 } a _ { 1 } + \frac { n ( n - 1 ) } { ( n + 1 ) ( n + 2 ) } a _ { 2 } + ... \right.$ ; confidence 0.512
235. ; $\sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { i = 0 } ^ { r _ { 2 } } a _ { i j } T _ { i j } = 0$ ; confidence 0.512
236. ; $T T$ ; confidence 0.512
237. ; $y _ { i } = \Delta \text { sales } = \left( \frac { c _ { 1 } } { 1 - \lambda } \right) \frac { I } { k } ( \text { in market } i )$ ; confidence 0.512
238. ; $\{ g _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.512
239. ; $F ^ { * } = p ^ { * - 1} q ^ { * }$ ; confidence 0.512
240. ; $\operatorname{Fm} _ { P }$ ; confidence 0.512
241. ; $s _ { i } ( z ) a ( z ) \equiv r _ { i } ( z ) ( \operatorname { mod } b ( z ) )$ ; confidence 0.512
242. ; $\operatorname { det } \left\| \frac { 1 } { b _ { j } ^ { l } } \right\| \neq 0,$ ; confidence 0.511
243. ; $X _ { \lambda }$ ; confidence 0.511
244. ; $N = \frac { 1 } { | g | ^ { 2 } + 1 } ( 2 \operatorname { Re } g , 2 \operatorname { Im } g , | g | ^ { 2 } - 1 )$ ; confidence 0.511
245. ; $q \in \mathbf{N}$ ; confidence 0.511
246. ; $M _ { 1 } , M _ { 2 } , \ldots$ ; confidence 0.511
247. ; $\operatorname{tr}$ ; confidence 0.511
248. ; $k = m + ( q _ { 1 } + \ldots + q _ { m } ) / 2$ ; confidence 0.511
249. ; $q \in L ^ { 2_0 } (\mathbf{ R} ^ { 3 } )$ ; confidence 0.511
250. ; $\operatorname { max } \{ q _ { 1 } + 2 , \ldots , q _ { m } + 2 \}$ ; confidence 0.511
251. ; $D ( 2 n _ { 2 } )$ ; confidence 0.511
252. ; $\operatorname{lim sup}_R S _ { R } ^ { ( n - 1 ) / 2 } f ( x ) = + \infty$ ; confidence 0.511
253. ; $R ^ { \prime } \subseteq R$ ; confidence 0.511
254. ; $\lambda = \operatorname { sup } \{ t \in \mathbf{Q} : H + t ( K _ { X } + B ) \text { is } f\square \text{ ample} \}$ ; confidence 0.511
255. ; $\mathsf{P} _ { 0 }$ ; confidence 0.510
256. ; $y \cong \widetilde{y}$ ; confidence 0.510
257. ; $j = 0 , \dots , N - 1$ ; confidence 0.510
258. ; $g _ { 1 } , \ldots , g _ { k }$ ; confidence 0.510
259. ; $a \in C ^ { \infty } ( M )$ ; confidence 0.510
260. ; $X ^ {**}$ ; confidence 0.510
261. ; $p + F . v $ ; confidence 0.510
262. ; $y _ { t+r} $ ; confidence 0.510
263. ; $\frac { \nu _ { 2 } } { \nu _ { 2 } - 2 } \quad \text { for } \nu _ { 2 } > 2$ ; confidence 0.510
264. ; $r ( z ) = p ( z ) / q ( z )$ ; confidence 0.510
265. ; $\Delta ( A , E ) = \sum _ { i = 0 } ^ { n } a _ { i , n - i }A ^ { i } E ^ { n - i } = 0.$ ; confidence 0.510
266. ; $R = I - \sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } L _ { \nu }$ ; confidence 0.510
267. ; $m_0$ ; confidence 0.510
268. ; $a _ { N / 2 + k}$ ; confidence 0.510
269. ; $G _ { q , k }$ ; confidence 0.510
270. ; $T _ { A } U _ { i } = U _ { i } \times N ^ { m } \subset T _ { A } \mathbf{R} ^ { m }$ ; confidence 0.510
271. ; $M \leq N$ ; confidence 0.510
272. ; $\zeta _ { 1 } , \ldots , \zeta _ { q }$ ; confidence 0.510
273. ; $\operatorname { span } \{ e _ { i } , f _ { i } , h _ { i i } \}$ ; confidence 0.510
274. ; $| r _ { 1 } | \geq \ldots \geq | r _ { p } | > | r _ { p } + 1 | \geq \ldots \geq | r _ { n } |,$ ; confidence 0.510
275. ; $\tau _ { p } : \otimes ^ { 4 } \mathcal{E} \rightarrow \otimes ^ { 4 } \mathcal{E}$ ; confidence 0.510
276. ; $K \subset G$ ; confidence 0.510
277. ; $x \in \mathcal{K}$ ; confidence 0.510
278. ; $\int \left( R _ { h} + \frac { 1 } { 2 } f ^ { - 2 } h ^ { \alpha \beta } \partial _ { \alpha } \mathcal{E}\partial _ { \beta } \overline { \mathcal{E} } \right) d \mu _ { h},$ ; confidence 0.509
279. ; $E _ { n + 1 } ( x ) = T _ { n + 1 } ( x )$ ; confidence 0.509
280. ; $| F ( 2 x ) | \leq c \sigma ( x ) , | A ( x , y ) | \leq c \sigma \left( \frac { x + y } { 2 } \right) ,$ ; confidence 0.509
281. ; $ c _g = \int _ { 0 } ^ { \infty } g ( t ) \operatorname { log } \frac { 1 } { t } d t,$ ; confidence 0.509
282. ; $\operatorname { Der } _ { k } \Omega ( M )$ ; confidence 0.509
283. ; $1 \in \mathbf{Z }( G / A )$ ; confidence 0.509
284. ; $Z = \sum _ { i = 1 } ^ { t } r _ { j } C _ { j }$ ; confidence 0.509
285. ; $(C)\int _ { A } f _ { 1 } d m \leq ( C ) \int _ { A } f_2 dm$ ; confidence 0.509
286. ; $\mathcal{Z} _ { 0 } \cap [ 0 , t] $ ; confidence 0.509
287. ; $\omega : I \rightarrow X$ ; confidence 0.509
288. ; $\nabla ^ { 2 } ( g (. ; t ) ^ { * } f ( . ) ) = 0$ ; confidence 0.509
289. ; $T o p$ ; confidence 0.509
290. ; $q _ { m } ( x ) \in L _ { 1,1 } (\mathbf{ R} _ { + } ) : = \left\{ q : \int _ { 0 } ^ { \infty } x | q ( x ) | d x < \infty \right\}.$ ; confidence 0.509
291. ; $\mathcal{O} _ { S }$ ; confidence 0.509
292. ; $pd _ { \Lambda } T = n < \infty$ ; confidence 0.509
293. ; $T _ { A } : \mathcal{M} f \rightarrow \mathcal{M} f$ ; confidence 0.509
294. ; $\frac { B _ { - ( \delta + p - 1 ) / 2} \left( \frac { 1 } { 4 } \Sigma T T ^ { \prime } \right) } { \Gamma _ { p } \left[ \frac { 1 } { 2 } ( \delta + p - 1 ) \right] },$ ; confidence 0.509
295. ; $d f _ { x } : T V _ { x } \rightarrow T W _ { f ( x )}$ ; confidence 0.509
296. ; $( q_j , p _ { j } )$ ; confidence 0.508
297. ; $||S_{NB} ||< C N ^ { ( n - 1 ) / 2 }$ ; confidence 0.508
298. ; $\varphi ( x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.508
299. ; $P = I - \sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * }$ ; confidence 0.508
300. ; $n , m = 0,1 , \dots ,$ ; confidence 0.508
Maximilian Janisch/latexlist/latex/NoNroff/57. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/57&oldid=45937