Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/NoNroff/53

From Encyclopedia of Mathematics
Jump to: navigation, search

List

1. a12007096.png ; $B _ { j } ( t , x , D _ { x } ) u = 0 , \text { on } [ 0 , T ] \times \partial \Omega ,\quad j = 1 , \ldots , m,$ ; confidence 0.592

2. i12006023.png ; $L : X _ { P } \rightarrow Y _ { Q }$ ; confidence 0.592

3. b12050052.png ; $X \in \mathbf R$ ; confidence 0.592

4. d12024020.png ; $\mathfrak { g } ^ { * } / G$ ; confidence 0.592

5. t120200172.png ; $r \in [ m + 1 , m + n ( 3 + \pi / k ) ]$ ; confidence 0.592

6. s130510157.png ; $d \leq 3$ ; confidence 0.592

7. e12001048.png ; $( \text { Epi } , \text { Mono } ) =$ ; confidence 0.592

8. l13010040.png ; $\widetilde { f } : = \mathcal F f$ ; confidence 0.592

9. b12052084.png ; $s _ { n } = - B _ { n } ^ { - 1 } F ( x _ { n } ) =$ ; confidence 0.592

10. w12007089.png ; $\| e ^ { i \xi A } \| \leq C ( 1 + | \xi | ) ^ { s }$ ; confidence 0.592

11. b12014034.png ; $\mathbf F _ { q } [ z ]$ ; confidence 0.592

12. m130230158.png ; $d _ { k } < 0$ ; confidence 0.592

13. i13009040.png ; $U _ { 1 , \mathfrak p }$ ; confidence 0.592

14. z13001073.png ; $z ^ { - k }$ ; confidence 0.591

15. d03024032.png ; $S ^ { ( r ) } ( f )$ ; confidence 0.591

16. a11038053.png ; $\approx$ ; confidence 0.591

17. k12005027.png ; $d _ { k } < 1$ ; confidence 0.591

18. a13022048.png ; $S _ { C } = \operatorname { Mod } ( ? , C ) / E _ { C }$ ; confidence 0.591

19. e12012043.png ; $i = 1 , \dots , M$ ; confidence 0.591

20. s09120032.png ; $p ( x ) = \overline{1}$ ; confidence 0.591

21. b13003026.png ; $\operatorname {JBW} ^ { * }$ ; confidence 0.591

22. d12012055.png ; $d : G \rightarrow \mathcal C$ ; confidence 0.591

23. d12029041.png ; $\operatorname { gcd } ( p _ { 1 } , \dots , p _ { k } , q ) = 1$ ; confidence 0.591

24. a1200607.png ; $j = 1 , \ldots , m$ ; confidence 0.591

25. h12012073.png ; $\pi ^ { \prime } = 1 _ { Y } - D ( \phi ^ { \prime } )$ ; confidence 0.591

26. e12006022.png ; $\Gamma X$ ; confidence 0.591

27. a130040149.png ; $\Lambda _ { \operatorname {S5} } T$ ; confidence 0.591

28. w13009059.png ; $\Gamma ( H ) = \sum _ { n = 0 } ^ { \infty } H ^ { \widehat{\otimes} n }$ ; confidence 0.591

29. m1301902.png ; $I \subset \mathbf{C}$ ; confidence 0.591

30. b13028032.png ; $f * ( x _ { n } )$ ; confidence 0.591

31. s1306504.png ; $\Phi _ { n + 1 } ( z ) = z \Phi _ { n } ( z ) + \rho _ { n + 1 } \Phi _ { n } ^ { * } ( z ),$ ; confidence 0.591

32. s12004011.png ; $a_\lambda = \operatorname { det } ( x _ { i } ^ { \lambda_j } ).$ ; confidence 0.591

33. j13002059.png ; $\mathsf P ( X \leq \lambda - t ) \leq \operatorname { exp } \left( - \frac { \phi ( - t / \lambda ) \lambda ^ { 2 } } { \overline { \Delta } } \right) \leq \operatorname { exp } \left( - \frac { t ^ { 2 } } { 2 \overline { \Delta } } \right).$ ; confidence 0.591

34. s13059010.png ; $\Lambda _ { 2 m + 1 } = \Lambda_{ - ( m + 1 ) , m}$ ; confidence 0.591

35. b1202502.png ; $B _ { \kappa }$ ; confidence 0.591

36. f1201905.png ; $H \cap g ^ { - 1 } H g = \{ 1 \}$ ; confidence 0.591

37. g12005031.png ; $\mu _ { c }$ ; confidence 0.591

38. m13008031.png ; $f _ { x } ( y ) = f ( y - x )$ ; confidence 0.591

39. s12029027.png ; $Y = Z$ ; confidence 0.590

40. s120230109.png ; $U \sim \mathcal U _ { p , p }$ ; confidence 0.590

41. l120120189.png ; $V _ { \text { simp } } ( M ) \neq \emptyset$ ; confidence 0.590

42. a01182081.png ; $M _ { 2 }$ ; confidence 0.590

43. i12004013.png ; $h _ { 1 } , \dots , h _ { \operatorname {l} }$ ; confidence 0.590

44. z130110101.png ; $\mathsf E \mu _ { n } ( x )$ ; confidence 0.590

45. r130070104.png ; $\| f \| _ { 1 } ^ { 2 } = \operatorname { lim } _ { n \rightarrow \infty } \| f _ { n } \| _ { 1 } ^ { 2 } =$ ; confidence 0.590

46. s12026035.png ; $\partial _ { t } ^ { * }$ ; confidence 0.590

47. b12013063.png ; $\langle f , g \rangle = \int _ { D } f \overline{g} d A$ ; confidence 0.590

48. l12006032.png ; $= \frac { 1 } { z - E _ { 0 } } + \frac { 1 } { z - E _ { 0 } } \int _ { 0 } ^ { \infty } d \lambda ( V \phi | \lambda \rangle \langle \lambda | G ( z ) \phi )$ ; confidence 0.590

49. s13002010.png ; $d u = \alpha \wedge d \alpha ^ { n - 1 }$ ; confidence 0.590

50. a13013095.png ; $n$ ; confidence 0.590

51. h12004040.png ; $G ( \mathfrak c , \mathfrak c )$ ; confidence 0.590

52. f12011082.png ; $H _ { \Omega } ^ { n } ( U , \widetilde { \mathcal O } )$ ; confidence 0.590

53. m12003062.png ; $b \downarrow 0$ ; confidence 0.590

54. q12001074.png ; $X \in C ^ { o }$ ; confidence 0.590

55. a13030034.png ; $\mathfrak S ( T )$ ; confidence 0.590

56. a011650234.png ; $d \in D$ ; confidence 0.590

57. b13006029.png ; $\lambda _ { 1 } , \dots , \lambda _ { n }$ ; confidence 0.590

58. i130030135.png ; $\operatorname {spin}^ { c }$ ; confidence 0.590

59. c02597037.png ; $\widetilde { t }$ ; confidence 0.589

60. h13002046.png ; $( \alpha _ { 1 } , \dots , \alpha _ { q } )$ ; confidence 0.589

61. d120020107.png ; $\widehat { c } ^ { 1 } k \geq 0$ ; confidence 0.589

62. b13012048.png ; $[- \pi , \pi ]$ ; confidence 0.589

63. c13014035.png ; $R_l = \{ ( i , j ) : a _ { i , j } = 1 \}$ ; confidence 0.589

64. d12016070.png ; $\mathcal F \subset L _ { 1 } ( S \times T )$ ; confidence 0.589

65. b110220230.png ; $j = 0$ ; confidence 0.589

66. t12005024.png ; $\operatorname {Ker} d f_x$ ; confidence 0.589

67. b12031067.png ; $\widehat { f } ( m ) = \int _ { \mathcal T ^ { n } } f ( x ) e ^ { - 2 \pi i x m } d x$ ; confidence 0.589

68. k1300106.png ; $\langle T _ { n } \rangle = ( - A ^ { 2 } - A ^ { - 2 } ) ^ { n - 1 }.$ ; confidence 0.589

69. k1201106.png ; $\mathbf t = ( t _ { j } )$ ; confidence 0.589

70. d033340103.png ; $\gamma_j$ ; confidence 0.589

71. o13006037.png ; $\mathfrak { V } ^ { \prime \prime } = ( A _ { 1 } ^ { \prime \prime } , A _ { 2 } ^ { \prime \prime } , \mathcal{H} ^ { \prime \prime } , \Phi ^ { \prime \prime } , \mathcal{E} , \sigma _ { 1 } , \sigma _ { 2 } , \gamma ^ { \prime \prime } , \widetilde { \gamma } ^ { \prime \prime } )$ ; confidence 0.589

72. c1200306.png ; $f : J \times G \rightarrow \mathbf{R} ^ { m }$ ; confidence 0.589

73. e03500080.png ; $\mathcal H _ { \epsilon } ^ { \prime } ( \xi ) = \operatorname { inf } \left\{ I ( \xi , \xi ^ { \prime } ) : \xi ^ { \prime } \in W _ { \epsilon } \right\},$ ; confidence 0.589

74. d13005020.png ; $\operatorname {RM} ( 1 , m )$ ; confidence 0.589

75. q12005044.png ; $d ^ { k } = - \operatorname { grad } _ { H _ { k } ^ { - 1 } } f ( x ^ { k } ),$ ; confidence 0.589

76. a13007037.png ; $3 ^ { 2 } \cdot 5 ^ { 2 } \cdot 11,\; 3 ^ { 5 } \cdot 5 ^ { 2 } \cdot 13,\; 3 ^ { 4 } \cdot 5 ^ { 2 } \cdot 13 ^ { 2 } ,\; 3 ^ { 3 } \cdot 5 ^ { 3 } \cdot 13 ^ { 2 }.$ ; confidence 0.589

77. n12010028.png ; $( b _ { i } a _ { i j } + b _ { j } a _ { j i } - b _ { i } b _ { j } ) _ { i , j = 1 } ^ { s }$ ; confidence 0.589

78. d12002070.png ; $P ^ { \prime } \subseteq P$ ; confidence 0.589

79. m130110129.png ; $\frac { D v _ { i } } { D t } = \frac { \partial v _ { i } } { \partial t } + v _ { k } v _ { i , k}$ ; confidence 0.589

80. l05700052.png ; $( \lambda z ( x z ) ) [ x : = z z ] \equiv ( \lambda z ^ { \prime } \cdot ( x z ^ { \prime } ) ) [ x : = z z ] \equiv ( \lambda z ^ { \prime } ( ( z z ) z ^ { \prime } ) ) \not \equiv$ ; confidence 0.589

81. y12001020.png ; $\square _ { k }\operatorname {Mod}$ ; confidence 0.588

82. t12008022.png ; $a, p _ { 1 } , \dots , p _ { s }$ ; confidence 0.588

83. s1201609.png ; $U ^ { i } ( f ) = \sum _ { j = 1 } ^ { m _ { i } } f ( x _ { j } ^ { i } ) \cdot a _ { j } ^ { i }.$ ; confidence 0.588

84. t13005078.png ; $\sigma ^ { \prime \prime }$ ; confidence 0.588

85. b120150166.png ; $g : \Theta \rightarrow \mathbf R$ ; confidence 0.588

86. b11002051.png ; $b : U \times U \rightarrow \mathbf R$ ; confidence 0.588

87. p13013010.png ; $M ( A _ { n } ) \cong \left\{ \begin{array} { l l } { \mathbf Z _ { 2 } } & { \text { if } n \geq 4 , n \neq 6,7, } \\ { \mathbf Z _ { 6 } } & { \text { if } n = 6,7, } \\ { \{ e \} } & { \text { if } n < 4. } \end{array} \right.$ ; confidence 0.588

88. w12021062.png ; $A _ { i } A _ { j } = A _ { j } A _ { i }$ ; confidence 0.588

89. k055840256.png ; $c ( A ) \subset \mathbf R \cup \{ \infty \}$ ; confidence 0.588

90. e120230146.png ; $d \pi _ { e } Z _ { e } = 0$ ; confidence 0.588

91. d12028064.png ; $F ( t ) = F _ { \phi } ( f ) = \int _ { \partial D _ { m } } f ( z ) \phi ( w ) \omega ( z , w ).$ ; confidence 0.588

92. c12031038.png ; $H _ { d } ^ { k }$ ; confidence 0.588

93. f120110191.png ; $( \infty , 0 , \ldots , 0 )$ ; confidence 0.588

94. e120240130.png ; $c _ { l } \in H ^ { 1 } ( G ( \overline { \mathbf Q } / \mathbf Q ) ; \operatorname { Sym } ^ { 2 } T _ { p } ( E ) )$ ; confidence 0.588

95. d130080105.png ; $F ^ { n } ( E _ { z } ( a , R ) ) \subset F _ { z } ( a , R )$ ; confidence 0.588

96. c12002015.png ; $( W _ { u } f ) ( x , t ) = ( f ^ { * } u _ { t } ) ( x )$ ; confidence 0.588

97. s13064011.png ; $[ \operatorname { log } a ] _ { k }$ ; confidence 0.588

98. a13024036.png ; $N ( 0 , \Sigma )$ ; confidence 0.587

99. d13006070.png ; $\uparrow$ ; confidence 0.587

100. n06786012.png ; $\mathcal S ^ { \prime } ( \mathbf R ^ { n } )$ ; confidence 0.587

101. w120110173.png ; $a = J ^ { - 1 / 2 } b$ ; confidence 0.587

102. f1200906.png ; $\mathcal H ( \mathbf C ^ { n } ) ^ { \prime }$ ; confidence 0.587

103. c0221102.png ; $\nu = ( \nu _ { 1 } , \dots , \nu _ { k } )$ ; confidence 0.587

104. f04132012.png ; $T _ { x } M$ ; confidence 0.587

105. a130240307.png ; $\operatorname {SS} _ { \mathcal H } = \| \widehat { \eta } _ { \Omega } - \widehat { \eta } _ { \omega } \| ^ { 2 }$ ; confidence 0.587

106. s120340154.png ; $x ( 0 ) \in L _ { - }$ ; confidence 0.587

107. b13028038.png ; $B ( n ) = \Sigma ^ { n } D T ( n ),$ ; confidence 0.587

108. a12028014.png ; $z \in \mathbf T$ ; confidence 0.587

109. b12030061.png ; $\lambda _ { m } ( \eta )$ ; confidence 0.587

110. c120010133.png ; $\widetilde{\mu} ( \zeta ) = \mu \left( \frac { 1 } { ( 1 + \langle \cdot , \zeta \rangle ) } \right).$ ; confidence 0.587

111. w120090340.png ; $0 \leq i \in \mathbf Z$ ; confidence 0.587

112. b110220196.png ; $X _ { \mathbf Z }$ ; confidence 0.587

113. b13011032.png ; $b _ { j } ^ { n }$ ; confidence 0.587

114. o13003053.png ; $P _ { 4 }$ ; confidence 0.587

115. p130070104.png ; $\operatorname { SPSH } ( \Omega \times \Omega )$ ; confidence 0.587

116. o1300605.png ; $\mathfrak { V } = ( A _ { 1 } , A _ { 2 } , \mathcal H , \Phi , \mathcal E , \sigma _ { 1 } , \sigma _ { 2 } , \gamma , \widetilde { \gamma } ).$ ; confidence 0.587

117. z13001021.png ; $k \in \mathbf Z ^ { + }$ ; confidence 0.587

118. v13005068.png ; $x _ { 0 } ^ { - 1 } \delta \left( \frac { x _ { 1 } - x _ { 2 } } { x _ { 0 } } \right) = \sum _ { n \in \mathbf Z } \frac { ( x _ { 1 } - x _ { 2 } ) ^ { n } } { x _ { 0 } ^ { n + 1 } } =$ ; confidence 0.587

119. c120180267.png ; $\otimes ^ { * } \mathcal E$ ; confidence 0.587

120. l12007025.png ; $r \geq | \lambda |$ ; confidence 0.587

121. w120110201.png ; $G _ { X } \leq C ( 1 + G _ { X } ^ { \sigma } ( X - Y ) ) ^ { N } G _ { Y }.$ ; confidence 0.586

122. e12012036.png ; $h_{i j} \geq 0$ ; confidence 0.586

123. c120180507.png ; $\widetilde { N } = N \times ( 0 , \infty ) \times ( - 1 , + 1 )$ ; confidence 0.586

124. n067520440.png ; $\widetilde { \xi }_i$ ; confidence 0.586

125. a13024021.png ; $\mathsf E ( \mathbf y ) = \mathbf X \beta$ ; confidence 0.586

126. e12019019.png ; $Q ( a - b ) = Q ( c - d )$ ; confidence 0.586

127. a12006077.png ; $\left\{ \begin{array} { l } { \frac { d u } { d t } + A ( t , u ) u = f ( t , u ) , \quad t \in [ 0 , T ], } \\ { u ( 0 ) = u _ { 0 }, } \end{array} \right.$ ; confidence 0.586

128. b12027011.png ; $S _ { n } = \sum _ { 1 } ^ { n } X _ { i }\; \text { for } \ n \geq 1 , \text { and for } \ t \geq 0 ,\; N ( t ) = k \;\text { if } S _ { k } \leq t < S _ { k + 1 } \;\text { for } k = 0,1, \dots ,$ ; confidence 0.586

129. c130160162.png ; $\operatorname {BPP}$ ; confidence 0.586

130. a130240164.png ; $\eta = \mathsf E ( \mathbf y )$ ; confidence 0.586

131. w120110121.png ; $\sigma _ { x _ { 0 } , \xi _ { 0 } }$ ; confidence 0.586

132. b13029035.png ; $\operatorname { dim } A _ { \mathfrak { p } } = \operatorname { dim } A - \operatorname { dim } A / \mathfrak { p }$ ; confidence 0.586

133. b130200155.png ; $\alpha \in \Pi ^ { \operatorname {im} }$ ; confidence 0.586

134. a01419022.png ; $c \in \mathbf R$ ; confidence 0.586

135. a130040243.png ; $K ( \varphi ) \approx L ( \varphi ) = \{ \kappa _ { j } ( \varphi ) \approx \lambda _ { j } ( \varphi ) : j \in J \}$ ; confidence 0.585

136. t12006042.png ; $N > Z$ ; confidence 0.585

137. s13053032.png ; $\{ e u : u \in U \}$ ; confidence 0.585

138. a1301802.png ; $\operatorname {Alg}( L )$ ; confidence 0.585

139. m130140146.png ; $d t = d t _ { 2 } \wedge \ldots \wedge d t _ { n }$ ; confidence 0.585

140. b130010100.png ; $\operatorname { Sp } ( 2 n , \mathbf R )$ ; confidence 0.585

141. e120190102.png ; $d : S \times S \rightarrow \mathbf R$ ; confidence 0.585

142. b12022065.png ; $H ( \cdot , \xi ) : D _ { \xi } \rightarrow R$ ; confidence 0.585

143. a012980100.png ; $n = 1,2 , \dots$ ; confidence 0.585

144. d13011040.png ; $s _ { j } \in C _ { j }$ ; confidence 0.585

145. n06696027.png ; $\mathsf P \{ X - Y \geq s \} = F _ { 2 s } ( x ; \lambda ).$ ; confidence 0.585

146. e12023090.png ; $( x , y , y ^ { \prime } , \dots , y ^ { ( k ) } ),$ ; confidence 0.585

147. l05702066.png ; $H _ { l } ^ { i } ( \overline { X } ) = H ^ { i } ( \overline{X} , \mathbf Z _ { l } ) \otimes \mathbf Q _ { l }$ ; confidence 0.585

148. a13013069.png ; $\tau ( t ) = ( \tau _ { l } ( t ) ) _ { l \in \mathbf Z }$ ; confidence 0.585

149. f12010088.png ; $g = \left( \begin{array} { c c } { A } & { B } \\ { C } & { D } \end{array} \right)$ ; confidence 0.585

150. l120170103.png ; $K ^ { 2 } \nearrow K ^ { 2 }\times I \searrow \operatorname {pt}$ ; confidence 0.585

151. f12016048.png ; $\chi_{ \lambda I - T}$ ; confidence 0.585

152. w130090106.png ; $g _ { n } \in L ^ { 2 } ( [ 0,1 ] ^ { n } )$ ; confidence 0.585

153. b01554015.png ; $Z = 0$ ; confidence 0.585

154. a110040113.png ; $d + 1$ ; confidence 0.585

155. f120080194.png ; $A ( \widehat{K} )$ ; confidence 0.585

156. s12026022.png ; $D _ { t } ^ { * }$ ; confidence 0.585

157. c1200207.png ; $v _ { t } ( x ) = t ^ { - n } v ( x / t )$ ; confidence 0.585

158. l12004076.png ; $u _ { i } ^ { n + 1 } = \frac { 1 } { 2 } ( u _ { i } ^ { n } + \widehat { u } _ { i } ^ { + } ) + \frac { 1 } { 2 } \frac { \Delta t } { \Delta x } ( \widehat { f } _ { i - 1 } ^ { + } - \widehat { f } _ { i } ^ { + } ),$ ; confidence 0.584

159. b12031069.png ; $\operatorname { lim } _ { R } S _ { R } ^ { \delta } \,f ( x ) = f ( x )$ ; confidence 0.584

160. h04602041.png ; $| \Delta P ( i \omega ) |$ ; confidence 0.584

161. c12031049.png ; $n ( \epsilon , F _ { d } ) \leq \kappa \cdot d \cdot \epsilon ^ { - 2 }$ ; confidence 0.584

162. t12006038.png ; $\rho _ { N } ^ { \operatorname {TF} }$ ; confidence 0.584

163. k12004035.png ; $\Lambda _ { D _ { + } } ^ { * } ( a , x ) - \Lambda _ { D _ { - } } ^ { * } ( a , x ) = x ( \Lambda _ { D _ { 0 } } ^ { * } ( a , x ) - \Lambda _ { D _ { \infty } } ^ { * } ( a , x ) )$ ; confidence 0.584

164. c1202906.png ; $M \rightarrow \operatorname { Aut } ( M )$ ; confidence 0.584

165. e12023015.png ; $y = ( y ^ { 1 } , \dots , y ^ { m } )$ ; confidence 0.584

166. b120040125.png ; $\| f _ { n } \| \rightarrow \| f \|$ ; confidence 0.584

167. e12026090.png ; $\mu _ { p }$ ; confidence 0.584

168. o13008065.png ; $I _ { 1 } ( k ) = \frac { f _ { 1 } ^ { \prime } ( 0 , k ) } { f _ { 1 } ( k ) } = \frac { f _ { 2 } ^ { \prime } ( 0 , k ) } { f _ { 2 } ( k ) } = I _ { 2 } ( k )$ ; confidence 0.584

169. i13009025.png ; $\cup _ { n \geq 0 } k ( \mu _ { p ^ n} )$ ; confidence 0.584

170. a13028019.png ; $a = 1$ ; confidence 0.584

171. a12012077.png ; $\langle x _ { t } , y _ { t } , c _ { t } \rangle$ ; confidence 0.584

172. t13014082.png ; $q _ { \mathcal B } ( v ) \geq 0$ ; confidence 0.584

173. a130240509.png ; $\mathsf E [ \mathbf Z _ { 32 } , \mathbf Z _ { 33 } ] = 0$ ; confidence 0.584

174. e13003019.png ; $\Gamma \subset \operatorname {SL} _ { 2 } ( \mathbf Z )$ ; confidence 0.584

175. w1300807.png ; $u ( x , t ) = U = f _ { g } ( \theta _ { 1 } , \ldots , \theta _ { g } ),$ ; confidence 0.584

176. b12015063.png ; $d ^ { * } : \{ 0,1 \} ^ { n } \rightarrow \mathbf R$ ; confidence 0.584

177. d12023064.png ; $= \sum _ { i = 0 } ^ { p - 1 } L ( x _ { i } ) L ^ { * } ( x _ { i } ) - \sum _ { i = 0 } ^ { q - 1 } L ( y _ { i } ) L ^ { * } ( y _ { i } ).$ ; confidence 0.584

178. i13009041.png ; $k _ { \mathfrak p }$ ; confidence 0.584

179. w120110268.png ; $S ( m , g _ { k } )$ ; confidence 0.584

180. s13064062.png ; $W _ { \tau } ( k )$ ; confidence 0.583

181. b12050053.png ; $\{ \operatorname {l} ( T , x ) : x \in \mathbf R \}$ ; confidence 0.583

182. a011650460.png ; $\mathbf D$ ; confidence 0.583

183. t13007035.png ; $\theta ( t ) - t = \frac { 1 } { 2 \pi } \operatorname {P} \cdot \operatorname {V}\cdot \int _ { 0 } ^ { 2 \pi } \operatorname { log } \rho ( \theta ( s ) ) \operatorname { cot } \frac { t - s } { 2 } d s,$ ; confidence 0.583

184. d12002014.png ; $g ( u _ { 1 } )$ ; confidence 0.583

185. w13008064.png ; $t \sim $ ; confidence 0.583

186. b12036016.png ; $p _ { x } , p _ { y } , p _ { z }$ ; confidence 0.583

187. d03027035.png ; $K _ { n ,\, p } ( t ) = \frac { 1 } { p + 1 } \sum _ { k = n - p } ^ { n } D _ { k } ( t ) =$ ; confidence 0.583

188. k055840322.png ; $U ( 0 ) = I _ { n }$ ; confidence 0.583

189. p0745206.png ; $A \subseteq P$ ; confidence 0.583

190. a130240108.png ; $y _ { i } = \alpha + \beta t _ { i } + \gamma t_{i} ^ { 2 } + e _ { i }$ ; confidence 0.583

191. f12021093.png ; $\frac { \partial u } { \partial \lambda } ( z , \lambda _ { 1 } ) = ( \operatorname { log } z ) z ^ { \lambda _ { 1 } }$ ; confidence 0.583

192. a120160113.png ; $x _ { ij }$ ; confidence 0.583

193. e120070107.png ; $\widetilde { H } ^ { 1 } ( \Gamma , k , \mathbf v ; P ( k ) )$ ; confidence 0.583

194. f12024028.png ; $\dot { x } ( t - g _ { 1 } ( t ) ) , \ldots , \dot { x } ( t - g_{l} ( t ) ) ).$ ; confidence 0.583

195. i13002049.png ; $\mathbf x = ( x _ { 1 } , \dots , x _ { m } ) ^ { T }$ ; confidence 0.583

196. e120020116.png ; $S ^ { 1 } \vee \ldots \vee S ^ { 1 }$ ; confidence 0.583

197. l13001026.png ; $L ^ { 1 } ( \mathbf T ^ { n } )$ ; confidence 0.583

198. b12022053.png ; $\mathcal U$ ; confidence 0.583

199. m130230100.png ; $\phi ^ { + }$ ; confidence 0.582

200. w09759021.png ; $\operatorname {ord} ( D )$ ; confidence 0.582

201. w120110263.png ; $a ^ { w } : H ( m m _ { 1 } , G ) \rightarrow H ( m _ { 1 } , G )$ ; confidence 0.582

202. b12015058.png ; $\operatorname { lim } _ { n \rightarrow \infty } \mathsf E _ { \mathsf P } [ ( d _ { n } ^ { * } - d ^ { * } ) ^ { 2 } ] = 0$ ; confidence 0.582

203. m1202407.png ; $( \psi [ 1 ] \varphi ) _ y = \varphi ^ { 2 } ( \psi \varphi ^ { - 1 } ) _ y.$ ; confidence 0.582

204. w130080172.png ; $\omega ^ { 0 } = \int \Sigma _ { g } \langle \delta A , \delta \overline { A } \rangle$ ; confidence 0.582

205. a130040592.png ; $\operatorname {Mod}_{\mathcal S _ { P }}$ ; confidence 0.582

206. o130060126.png ; $p ( \lambda _ { 1 } , \lambda _ { 2 } ) = ( f ( \lambda _ { 1 } , \lambda _ { 2 } ) ) ^ { r }$ ; confidence 0.582

207. a12012018.png ; $B = I$ ; confidence 0.582

208. b12036034.png ; $\epsilon ( a , b , c , d )$ ; confidence 0.582

209. b130300105.png ; $n > 10 ^ { 10 }$ ; confidence 0.582

210. g12007036.png ; $\mathcal{Z} _ { m + 1 } ^ { \pi }$ ; confidence 0.582

211. a130240169.png ; $\beta . = 0$ ; confidence 0.582

212. i1300703.png ; $\operatorname { lim } _ { r \rightarrow \infty } \int _ { |x| = r } \left| \frac { \partial v } { \partial r } - i k v \right| ^ { 2 } d s = 0,$ ; confidence 0.581

213. a11001011.png ; $a$ ; confidence 0.581

214. p12014013.png ; $\theta = \theta ( a _ { 0 } , a _ { 1 } ) > 1$ ; confidence 0.581

215. v120020193.png ; $( t ^ { * } ) ^ { - 1 } \circ ( t - r ) ^ { * } \beta _ { 1 } = k \beta _ { 2 }$ ; confidence 0.581

216. n13005022.png ; $r \leq s \mu$ ; confidence 0.581

217. k0550707.png ; $H ^ { r } ( M , \mathbf C ) \cong \bigoplus \sum_ { p + q = r } H ^ { p , q } ( M ),$ ; confidence 0.581

218. a130050256.png ; $P _ { \mathcal{C} } ^ { \# } ( n )$ ; confidence 0.581

219. z13005011.png ; $\delta ( a b ) = a \delta ( b ) + b \delta ( a )$ ; confidence 0.581

220. f12008092.png ; $M A ( G )$ ; confidence 0.581

221. s13050010.png ; $\left( \begin{array} { c } { [ n ] } \\ { ( n + 1 ) / 2 } \end{array} \right)$ ; confidence 0.581

222. i12008091.png ; $F = - k _ { B } T \operatorname { ln } \lambda _ { + } =$ ; confidence 0.581

223. l12009060.png ; $T _ { p }$ ; confidence 0.580

224. d120020194.png ; $\underline { v } = g ( \overline { u } _ { 1 } )$ ; confidence 0.580

225. a130040657.png ; $h ( F _ { \mathcal S _ { P } } \mathfrak { M } ^ { * L} ) = F _ { \mathcal S _ { P } } \mathfrak { N } ^ { * L}$ ; confidence 0.580

226. v09690080.png ; $S \in A ^ { + }$ ; confidence 0.580

227. t120010120.png ; $b _ { 2 } ( \mathcal{S} ) \leq 1$ ; confidence 0.580

228. l12005018.png ; $f ( x ) = \operatorname { lim } _ { N \rightarrow \infty } \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { N } \operatorname { cosh } ( \pi \tau ) \operatorname { Im } K _ { 1 / 2 + i \tau } ( x ) F ( \tau ) d \tau ,$ ; confidence 0.580

229. k13006029.png ; $\left( \begin{array} { c } { a _ { k } } \\ { k } \end{array} \right) \leq m$ ; confidence 0.580

230. t120200227.png ; $\phi ( z ) = z ^ { k } + a _ { 1 } z ^ { k - 1 } + \ldots + a _ { k }$ ; confidence 0.580

231. c11025044.png ; $\Delta _ { n }$ ; confidence 0.580

232. b12009060.png ; $h ( z ) = 1 + c _ { 1 } z + c _ { 2 } z ^ { 2 } + \ldots$ ; confidence 0.580

233. c13010023.png ; $a_{ 0 } = 0$ ; confidence 0.580

234. e13004047.png ; $\overset{ \rightharpoonup} { x } \cdot \overset{ \rightharpoonup} { v }$ ; confidence 0.580

235. n12010029.png ; $c _ { i } \neq c _ { j }$ ; confidence 0.580

236. a01084010.png ; $A ^ { * }$ ; confidence 0.580

237. c12019014.png ; $\operatorname {ind} ( D )$ ; confidence 0.580

238. o12005056.png ; $u ^ { q }$ ; confidence 0.580

239. m13002068.png ; $T P ^ { 1 }$ ; confidence 0.579

240. f12008091.png ; $\| \varphi \|_{ MA(G)} = \| M_\varphi \|$ ; confidence 0.579

241. d11018016.png ; $e ^ { \xi ( u ) } = 1 + u \xi ( u )$ ; confidence 0.579

242. h1300506.png ; $u ( x , 0 ) = u_0 ( x ),$ ; confidence 0.579

243. s12026068.png ; $\Omega = ( 1,0,0 , \dots )$ ; confidence 0.579

244. b110220229.png ; $\operatorname {CH} ^ { i } ( X , j )$ ; confidence 0.579

245. t120200123.png ; $\geq \frac { 1 } { 8 } \left( \frac { n - 1 } { 8 e ( m + n ) } \right) ^ { n } \operatorname { min }_ j | b _ { 1 } + \ldots + b _ { j } |.$ ; confidence 0.579

246. w13008050.png ; $T _ { m } = \epsilon t _ { m }$ ; confidence 0.579

247. a12006034.png ; $u ( t ) = e ^ { - t A } u _ { 0 } + \int _ { 0 } ^ { t } e ^ { - ( t - s ) A } f ( s ) d s,$ ; confidence 0.579

248. s120050114.png ; $B ( z ) = C \prod _ { j = 1 } ^ { \kappa } \frac { z - \alpha_ j } { 1 - \overline { \alpha }_ j z },$ ; confidence 0.579

249. g13006032.png ; $\mathbf x = [ x _ { 1 } \ldots x _ { n } ] ^ { T }$ ; confidence 0.579

250. l11002067.png ; $| x \vee y | \preceq | x | \vee | y | \preceq | x | | y |,$ ; confidence 0.579

251. g13006042.png ; $\sum _ { j = 1 } ^ { n } a _ { i ,\, j }\, x _ { j } = \lambda x _ { i }$ ; confidence 0.579

252. z13010070.png ; $\{ \emptyset , \{ \emptyset \} , \{ \emptyset , \{ \emptyset \} \} \}, \dots$ ; confidence 0.579

253. h13002031.png ; $N = N ( q , r ) \in \mathbf N$ ; confidence 0.578

254. i12006042.png ; $\operatorname { Succ } ( x ) = \{ y : x <_ P y \}$ ; confidence 0.578

255. v13011028.png ; $\Phi ( z ) = - \frac { i \Gamma } { 2 \pi } \operatorname { log } \left[ \prod _ { m = - \infty } ^ { \infty } ( z - ( z _ { 0 } - m l ) ) \right] =$ ; confidence 0.578

256. m130110130.png ; $\frac { D \mathbf{v} } { D t } = \frac { \partial \mathbf{v} } { \partial t } + ( \mathbf{v} \cdot \nabla ) \mathbf v .$ ; confidence 0.578

257. f13001042.png ; $O ^ { \sim } ( n )$ ; confidence 0.578

258. k13002012.png ; $y _ { j } > y _ { k }$ ; confidence 0.578

259. t12005088.png ; $( p - n + i _ { 1 } ) \cdot \mu _ { i _ { 1 } , \dots , i _ { r } } - ( i _ { 1 } - i _ { 2 } ) \cdot \mu _ { i _ { 2 } , \dots , i _ { r } } \dots $ ; confidence 0.578

260. n12002034.png ; $\mu ^ { \prime } ( d x ) = \operatorname { exp } \langle \alpha , x \rangle \mu ( d x )$ ; confidence 0.578

261. b12044091.png ; $h \in G$ ; confidence 0.578

262. b13002049.png ; $\mathbf{O}$ ; confidence 0.578

263. b120400105.png ; $\varrho = e ^ { p } : B \rightarrow \mathbf C ^ { * }$ ; confidence 0.578

264. s120040117.png ; $1 , \dots , | \lambda |$ ; confidence 0.578

265. f12024026.png ; $\dot { x } ( t ) = f ( t , x ( t - h _ { 1 } ( t ) ) , \ldots , x ( t - h _ { k } ( t ) ) ),$ ; confidence 0.578

266. b12042028.png ; $( \mathcal C , \otimes , \Phi , \underline { 1 } , l , r )$ ; confidence 0.578

267. h12012072.png ; $\pi = 1_ Y - D ( \phi )$ ; confidence 0.578

268. b1201607.png ; $p _ { i k ,\, j} = p _ { k i ,\, j}$ ; confidence 0.578

269. a130040456.png ; $h ( \psi _ { 0 } ) , \ldots , h ( \psi _ { n - 1} ) \in F$ ; confidence 0.578

270. t120070105.png ; $1 _ { n } = 0$ ; confidence 0.578

271. s13034047.png ; $S l _ { 2 } ( C )$ ; confidence 0.578

272. s13054085.png ; $\{ \cdot , \cdot \}_p$ ; confidence 0.577

273. b110100180.png ; $\{ 1 , \ldots , n \}$ ; confidence 0.577

274. z13011056.png ; $\frac { 1 } { n } G _ { p , n } \stackrel { \omega } { \rightarrow } G,$ ; confidence 0.577

275. p12017056.png ; $\mathcal N _ { \epsilon } ^ { \prime }$ ; confidence 0.577

276. f13016043.png ; $\mu _ { R } ( M ) \leq$ ; confidence 0.577

277. s12005075.png ; $V = \left( \begin{array} { l l } { T } & { F } \\ { G } & { H } \end{array} \right)$ ; confidence 0.577

278. a12016056.png ; $S _ { t } = c _ { 0 } + c _ { 1 } u _ { t } + c _ { 1 } \lambda u _ { t - 1 } + c _ { 1 } \lambda ^ { 2 } u _ { t - 2 } + \ldots + \mu _ { t },$ ; confidence 0.577

279. c120210135.png ; $\{ P _ { n , \theta } \}$ ; confidence 0.577

280. q1300509.png ; $\operatorname {QS} ( \mathbf R )$ ; confidence 0.577

281. s13054065.png ; $\Delta ^ { 2 } F$ ; confidence 0.577

282. w1200704.png ; $g : \mathbf R ^ { 2 n } \rightarrow \mathbf R$ ; confidence 0.577

283. a01024060.png ; $A _ { i j }$ ; confidence 0.577

284. b1102207.png ; $i = 0,1 , \ldots$ ; confidence 0.577

285. k12008031.png ; $\lambda : \mathbf R ^ { n } \rightarrow \mathbf R ^ { q }$ ; confidence 0.577

286. d120020234.png ; $v _ { M } = v ^ { * }$ ; confidence 0.577

287. c120180495.png ; $= \widetilde { N }$ ; confidence 0.576

288. b12040037.png ; $\pi ( g \times ^ { \varrho } \mathbf f ) = g H$ ; confidence 0.576

289. t13014073.png ; $v \in \mathbf N ^ { Q _ 0}$ ; confidence 0.576

290. z13004022.png ; $K _ { 7 , 7}$ ; confidence 0.576

291. m13001021.png ; $c : \mathcal X \rightarrow \{ 0,1 \}$ ; confidence 0.576

292. t120200106.png ; $1 = | z _ { 1 } | \geq \ldots \geq | z _ { n } |$ ; confidence 0.576

293. m12012079.png ; $g : B _ { R } \rightarrow R _ { R }$ ; confidence 0.576

294. e035000117.png ; $\mathcal H _ { \epsilon } ^ { \prime \prime } \leq \mathcal H _ { \epsilon / 2 },$ ; confidence 0.576

295. t12006045.png ; $\rho ^ { \operatorname {TF} } _{ Z }$ ; confidence 0.576

296. q12005066.png ; $H _ { \operatorname {new} } = H - \frac { H y y ^ { T } H } { y ^ { T } H y } + \frac { s s ^ { T } } { s ^ { T } y } + \phi \cdot w v ^ { T },$ ; confidence 0.576

297. t13015027.png ; $\operatorname {Index}( T _ { f } ) = \operatorname { dim } \operatorname { Ker } T _ { f } - \operatorname { dim } \text { Coker } T _ { f }$ ; confidence 0.576

298. m13022036.png ; $V _ { 1 } = \rho _ { 1 } \oplus \rho _ { 196883}$ ; confidence 0.576

299. r130080125.png ; $( u , v )_ + = \int _ { D } \int _ { D } B ( x , y ) u ( y ) \overline { v ( x ) } d y d x \;\text { if } H _ { 0 } = L ^ { 2 } ( D ),$ ; confidence 0.576

300. d12013022.png ; $f ( X ) = X ^ { q ^ { n } } + \sum _ { i = 0 } ^ { n - 1 } ( - 1 ) ^ { n - i } c _ { n , i } X ^ { q ^ { i } } \in K [ X ].$ ; confidence 0.576

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/53. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/53&oldid=49704