Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/NoNroff/34

From Encyclopedia of Mathematics
Jump to: navigation, search

List

1. w12007077.png ; $\sigma ( \mathcal{D} , \mathcal{X} ) _ { \operatorname{KN} }$ ; confidence 0.895

2. b12016027.png ; $x _ { 3 } ^ { \prime }$ ; confidence 0.895

3. m12013083.png ; $F ^ { 2 }$ ; confidence 0.895

4. e11013066.png ; $p = q$ ; confidence 0.895

5. s13034024.png ; $L _ { + } = L _ { - }$ ; confidence 0.895

6. a1300106.png ; $B$ ; confidence 0.895

7. a130240106.png ; $t_i$ ; confidence 0.895

8. b12016030.png ; $x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$ ; confidence 0.895

9. w120110192.png ; $X \in \Phi$ ; confidence 0.895

10. i13005090.png ; $q ( x ) = - 2 d A _ { - } ( x , x ) / d x$ ; confidence 0.895

11. r13008050.png ; $\phi _ { j } \in H$ ; confidence 0.895

12. b120210126.png ; $w \leq w ^ { \prime }$ ; confidence 0.895

13. d120020193.png ; $g ( \overline { u } _ { 1 } ) > \underline { v }$ ; confidence 0.895

14. t12014049.png ; $\sigma ( T _ { \phi } ) = \sigma _ { \operatorname{e} } ( T _ { \phi } ) \bigcup \{ \lambda \notin \sigma _ { \operatorname{e} } ( T _ { \phi } ) : \text { ind } T _ { \phi - \lambda } \neq 0 \}.$ ; confidence 0.895

15. a12018010.png ; $\Delta ^ { 2 } S _ { n } = \Delta S _ { n + 1 } - \Delta S _ { n } = S _ { n + 2 } - 2 S _ { n + 1 } + S _ { n }$ ; confidence 0.895

16. g0433809.png ; $\epsilon ( t h ) / t \rightarrow 0$ ; confidence 0.895

17. t130130124.png ; $\Gamma = \operatorname { End } _ { \Lambda } T$ ; confidence 0.895

18. d13011012.png ; $\alpha _ { z }$ ; confidence 0.895

19. i12006030.png ; $x _ { 1 } <_{P} x _ { 2 }$ ; confidence 0.895

20. t120200157.png ; $S = [ m + 1 , m + n ] \cup [ 2 m + 1,2 m + n ]$ ; confidence 0.895

21. c13015027.png ; $\varphi \in \mathcal{A} _ { q } ( \mathbf{R} ^ { n } )$ ; confidence 0.895

22. f04157032.png ; $( x , \dot { x } )$ ; confidence 0.895

23. c130070111.png ; $\delta ( P ) = \sum \frac { d ( Q ) ( d ( Q ) - 1 ) } { 2 }$ ; confidence 0.895

24. t13011035.png ; $\operatorname { Ext } _ { A } ^ { 1 } ( T , - )$ ; confidence 0.894

25. b13026058.png ; $\operatorname { deg } _ { B } [ f , \Omega , y ] = \operatorname { deg } _ { B } [ g , \Omega , y ]$ ; confidence 0.894

26. a13007091.png ; $\sigma ^ { 0 } ( m ) / m < \sigma ^ { 0 } ( n ) / n$ ; confidence 0.894

27. d12018030.png ; $L ^ { p } ( \partial \mathbf{D} , d \theta / 2 \pi )$ ; confidence 0.894

28. s13011030.png ; $w \in \mathcal{S} _ { \infty }$ ; confidence 0.894

29. j130040146.png ; $\operatorname { deg } _ { z } P _ { L } ( v , z )$ ; confidence 0.894

30. t09356055.png ; $f \mapsto \pi_f$ ; confidence 0.894

31. b13017032.png ; $S ( t ) = S _ { t }$ ; confidence 0.894

32. f13029054.png ; $\bigotimes _ { j \in J } \mathcal{T} ( u _ { j } ) \leq \mathcal{T} \left( \bigotimes _ { j \in J } u _ { j } \right) .$ ; confidence 0.894

33. c1104003.png ; $\{ G ; . , \preceq \}$ ; confidence 0.894

34. m12007069.png ; $m ( P ) \geq c _ { 2 } ( s )$ ; confidence 0.894

35. a12020030.png ; $N \geq 2$ ; confidence 0.894

36. s12030015.png ; $E _ { G }$ ; confidence 0.894

37. e120240105.png ; $\operatorname { Hom } ( T , \mathbf{Q} _ { p } / \mathbf{Z} _ { p } ( 1 ) )$ ; confidence 0.894

38. a12022022.png ; $Y$ ; confidence 0.894

39. h04691038.png ; $\mathbf{R} \rightarrow [ 0,1 ]$ ; confidence 0.894

40. j120020104.png ; $\varphi \in \operatorname{BMO}$ ; confidence 0.894

41. l11002028.png ; $C [ \mathbf{R} ]$ ; confidence 0.894

42. s12024035.png ; $\overline { E }_{*} ( )$ ; confidence 0.894

43. m13026024.png ; $A \mathcal{H} = \mathcal{H}$ ; confidence 0.894

44. w1300702.png ; $\underline{m}$ ; confidence 0.894

45. u1300203.png ; $\int | x - a | ^ { 2 } | f ( x ) | ^ { 2 } d x$ ; confidence 0.894

46. b110220245.png ; $\phi _ { i } : \operatorname{CH} ^ { i } ( X ) ^ { 0 } \rightarrow J ^ { i } ( X )$ ; confidence 0.894

47. a01146084.png ; $m \geq 1$ ; confidence 0.894

48. i12005072.png ; $\beta ( m + k , \alpha _ { n } , \theta _ { n } ; V )$ ; confidence 0.893

49. c024520112.png ; $D ^ { k }$ ; confidence 0.893

50. c13015028.png ; $| \partial ^ { \alpha } R ( \varphi _ { \varepsilon , x } ) |$ ; confidence 0.893

51. a12008029.png ; $v \in V$ ; confidence 0.893

52. b13027062.png ; $\operatorname { Ext } ( A )$ ; confidence 0.893

53. h046010134.png ; $( W \times P ; M _ { 0 } \times P , M _ { 1 } \times P )$ ; confidence 0.893

54. r130080117.png ; $v : = A ^ { - 1 / 2 } u \in H _ { 0 }$ ; confidence 0.893

55. o12005017.png ; $d_f ( t ) = m ( \{ s > 0 : | f ( s ) | > t \} )$ ; confidence 0.893

56. b13018013.png ; $a + i b$ ; confidence 0.893

57. d12019024.png ; $0 < \lambda _ { 1 } \leq \lambda _ { 2 } \leq \ldots$ ; confidence 0.893

58. a13032014.png ; $= \frac { 1 - ( 1 - \theta ) ^ { n } } { \theta } \text { for } \theta > 0.$ ; confidence 0.893

59. b12049051.png ; $\operatorname { lim } _ { n \rightarrow \infty } m _ { n } ( E ) = m _ { 0 } ( E )$ ; confidence 0.893

60. z13001072.png ; $\delta _ { k } ( n )$ ; confidence 0.893

61. c13019067.png ; $S : = \operatorname { inv } ( N )$ ; confidence 0.893

62. l11002072.png ; $| x | \wedge | y | = e$ ; confidence 0.893

63. m13011090.png ; $D v _ { i } / D t$ ; confidence 0.893

64. a1202405.png ; $f \in \mathbf{Q} ^ { * }$ ; confidence 0.893

65. a01212064.png ; $u \in U$ ; confidence 0.893

66. c120180338.png ; $C ( g ) = 0 \in \otimes ^ { 3 } \mathcal{E}$ ; confidence 0.893

67. t09237031.png ; $X ( M )$ ; confidence 0.893

68. w13008034.png ; $\lambda _ { 1 } = \ldots = \lambda _ { 2 g } = \alpha _ { 1 } = \ldots = \alpha _ { g } = 0$ ; confidence 0.893

69. d0303303.png ; $E ^ { * } ( M ) = \sum _ { p = 0 } ^ { n } E ^ { p } ( M )$ ; confidence 0.893

70. l12016037.png ; $\operatorname{Diff}( S ^ { 1 } ) / S ^ { 1 }$ ; confidence 0.893

71. b12050038.png ; $\tau _ { x } : = \operatorname { inf } \{ s : M _ { s } > x \}.$ ; confidence 0.892

72. t130140149.png ; $KI$ ; confidence 0.892

73. o130060173.png ; $v = u - i \Phi f.$ ; confidence 0.892

74. o12005031.png ; $\operatorname { inf } _ { t > 0 } S ( 2 t ) / S ( t ) > 1$ ; confidence 0.892

75. n13006048.png ; $\sum _ { i = 1 } ^ { k } \mu _ { i } \leq \frac { n } { n + 2 } \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } } , k = 1,2, \dots .$ ; confidence 0.892

76. s130510110.png ; $\gamma ( u ) = k $ ; confidence 0.892

77. s13044022.png ; $V \mapsto \operatorname { Hom } _ { k } ( V , k )$ ; confidence 0.892

78. c12008060.png ; $\operatorname { det } [ E \lambda - A ] = \sum _ { i = 0 } ^ { n } a _ { i } s ^ { i }$ ; confidence 0.892

79. e1201606.png ; $\xi = X _ { a } d x ^ { a }$ ; confidence 0.892

80. p0754805.png ; $p \supset ( q \supset ( p \& q ) )$ ; confidence 0.892

81. c13001016.png ; $\frac { \partial c } { \partial n } = 0 \text{ on the boundary } \partial V \text{ of } V.$ ; confidence 0.892

82. h13003068.png ; $H _ { n } ^ { - 1 } = B ( q , t )$ ; confidence 0.892

83. a11070077.png ; $\alpha _ { H }$ ; confidence 0.892

84. f120150181.png ; $A + T \in \Phi_+ ( X , Y )$ ; confidence 0.892

85. a13008035.png ; $\frac { f ^ { \prime } ( L ) } { f ( L ) } < \frac { g ^ { \prime } ( L ; m , s ) } { g ( L ; m , s ) } , \frac { f ^ { \prime } ( R ) } { f ( R ) } < \frac { g ^ { \prime } ( R ; m , s ) } { g ( R ; m , s ) }.$ ; confidence 0.892

86. e12023061.png ; $L \mapsto \mathcal{E} ( L )$ ; confidence 0.892

87. i12008035.png ; $\langle A \rangle _ { T }$ ; confidence 0.892

88. m12012073.png ; $A q , q B \subseteq R$ ; confidence 0.892

89. w120090299.png ; $\mathfrak{n} ^ { + }$ ; confidence 0.892

90. b13026050.png ; $\operatorname { deg } _ { B } [ F ( ., \lambda ) , U _ { \lambda } , y ]$ ; confidence 0.892

91. e03662011.png ; $Q _ { j } ( z )$ ; confidence 0.892

92. a130050182.png ; $a ( n )$ ; confidence 0.892

93. k12011010.png ; $y = t_2$ ; confidence 0.892

94. d031850197.png ; $d u$ ; confidence 0.892

95. b13029014.png ; $e _ { \mathfrak{q} } ^ { 0 } ( M )$ ; confidence 0.892

96. d13018084.png ; $\operatorname { im } _ { \alpha } f g _ { \alpha } = f$ ; confidence 0.891

97. h12012050.png ; $\varphi d_Z \varphi = \varphi$ ; confidence 0.891

98. p13012033.png ; $L \geq $ ; confidence 0.891

99. m130260193.png ; $B = ( B ^ { \perp } ) ^ { \perp }$ ; confidence 0.891

100. o13001096.png ; $A = \mu _ { 0 } \beta _ { 11 } + \alpha _ { 22 } \operatorname { cos } \theta - \alpha _ { 32 } \operatorname { sin } \theta , B = \alpha _ { 21 } \operatorname { cos } \theta - \alpha _ { 31 } \operatorname { sin } \theta - \mu _ { 0 } \beta _ { 12 },$ ; confidence 0.891

101. p13010060.png ; $H _ { k } ( \mathbf{C} ^ { n } \backslash K ; G ) = 0,1 \leq k \leq n - 1,$ ; confidence 0.891

102. m13001042.png ; $M _ { i j }^a$ ; confidence 0.891

103. t12015067.png ; $( \Delta \xi ^ { \# } | \eta ^ { \# } ) = ( \eta | \xi )$ ; confidence 0.891

104. b12009039.png ; $p _ { 0 } ( \xi ) = 1 + \alpha _ { 1 } \xi + \alpha _ { 2 } \xi ^ { 2 } + \ldots ( \operatorname { Re } p _ { 0 } ( \xi ) > 0 )$ ; confidence 0.891

105. b12036015.png ; $\epsilon = ( p _ { x } ^ { 2 } + p _ { y } ^ { 2 } + p _ { z } ^ { 2 } ) / 2 m$ ; confidence 0.891

106. s13049040.png ; $A \subseteq N _ { k }$ ; confidence 0.891

107. c13019015.png ; $L \subset N$ ; confidence 0.891

108. a13024051.png ; $\beta$ ; confidence 0.891

109. t13005024.png ; $E _ { i } ^ { * } E _ { j } + E _ { j } E _ { i } ^ { * } = \delta _ { i j }$ ; confidence 0.891

110. w12006016.png ; $g : M ^ { \prime } \rightarrow \mathbf{R}$ ; confidence 0.891

111. f130100116.png ; $f \mapsto ( \widehat { f } \circ \varepsilon )$ ; confidence 0.891

112. a120070106.png ; $L ( t , x , D _ { x } )$ ; confidence 0.891

113. c02565076.png ; $\{ f _ { n } \}$ ; confidence 0.891

114. a1100208.png ; $n = k - \lambda$ ; confidence 0.891

115. a110040127.png ; $\tilde{A}$ ; confidence 0.891

116. c12020047.png ; $k \leq n - 1$ ; confidence 0.891

117. a13007019.png ; $3 ^ { 3 } .5 .79$ ; confidence 0.891

118. s13002033.png ; $\int _ { Q } f ( u ) d u = \int _ { \gamma \in \Gamma} \int_{ I ( \gamma ) } f ( \gamma ^ { \prime } ( t ) ) d t d \gamma.$ ; confidence 0.891

119. a13028012.png ; $\operatorname { cn } ( u | k )$ ; confidence 0.891

120. f12023076.png ; $\operatorname { Der } _ { 1 } \Omega ( M )$ ; confidence 0.891

121. v13011079.png ; $d M _ { 3 } = \rho \frac { \Gamma ^ { 2 } } { 2 \pi l }.$ ; confidence 0.890

122. k1300605.png ; $X < Y$ ; confidence 0.890

123. f12016031.png ; $k _ { G } \neq 0$ ; confidence 0.890

124. t120200209.png ; $k = \rho = 0$ ; confidence 0.890

125. w12006034.png ; $h \circ f - h \circ g \in \mathcal{A}$ ; confidence 0.890

126. a12008047.png ; $u \in C ( [ 0 , T ] ; H ^ { 2 } ( \Omega ) ) \cap C ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.890

127. a12015040.png ; $\text{Ad}( g ) Y = g Y g ^ { - 1 } , ( \text { ad } X ) Y = X Y - Y X,$ ; confidence 0.890

128. b130200110.png ; $D _ { i } ( a ) = n _ { i } a$ ; confidence 0.890

129. s13045070.png ; $C _ { X , Y } ( u , v )$ ; confidence 0.890

130. o13002023.png ; $M ( r _ { 1 } , r _ { 2 } )$ ; confidence 0.890

131. i1300506.png ; $t ( k )$ ; confidence 0.890

132. k13007049.png ; $\| u \| _ { 2 }$ ; confidence 0.890

133. j13004059.png ; $D_{ L}$ ; confidence 0.890

134. h120020100.png ; $\psi = \overline { \mathcal{P} - \phi }$ ; confidence 0.890

135. t120200181.png ; $B = \frac { 1 } { 6 K } \left( \frac { K } { 4 e ( m + 2 K ) } \right) ^ { 2 K } \left| \operatorname { Re } \sum _ { j = 0 } ^ { n } P _ { j } ( 0 ) \right|$ ; confidence 0.890

136. s12024055.png ; $d x _ { i } ^ { n + 1 } = z _ { i } ^ { n } - z _ { i + 1 } ^ { n }.$ ; confidence 0.890

137. b13004014.png ; $I_3$ ; confidence 0.890

138. l0600405.png ; $a _ { i } / a _ { i - 1 }$ ; confidence 0.890

139. d13013098.png ; $N = 2$ ; confidence 0.890

140. e120120127.png ; $\Sigma ^ { ( t + 1 ) } = \frac { \sum _ { i } w _ { i } ^ { ( t + 1 ) } ( y _ { i } - \mu ^ { ( t + 1 ) } ) ( y _ { i } - \mu ^ { ( t + 1 ) } ) ^ { T } } { \sum _ { i } w _ { i } ^ { ( t + 1 ) } }.$ ; confidence 0.890

141. f120110110.png ; $\mathcal{S} ^ { \prime }$ ; confidence 0.890

142. b13020075.png ; $\mathfrak { h } = \operatorname { span } \{ h _ { i } \}$ ; confidence 0.890

143. e13003030.png ; $\mathcal{C} _ { \infty } ( \Gamma \backslash G ( \mathbf{R} ) \otimes M _ { \mathbf{C} } )$ ; confidence 0.890

144. p12013030.png ; $\{ 1 , \theta , \theta ^ { 2 } , \ldots \}$ ; confidence 0.890

145. t13014091.png ; $R \simeq K Q / I$ ; confidence 0.889

146. s13040044.png ; $G = \mathbf{Z} / p$ ; confidence 0.889

147. a12015018.png ; $\text{Ad}( G )$ ; confidence 0.889

148. k055840396.png ; $N _ { f } ( z , \rho ) = \frac { f ( z ) - \overline { f ( \rho ) } } { z - \overline { \rho } }$ ; confidence 0.889

149. b12031097.png ; $\lambda _ { k } = 2 k + n$ ; confidence 0.889

150. a12023080.png ; $\limsup_{k \rightarrow \infty} \sqrt [ a _ { k } ] { k } \leq 1$ ; confidence 0.889

151. a130180167.png ; $i , j \in \omega$ ; confidence 0.889

152. s12032095.png ; $\operatorname { str } ( T ) = \operatorname { tr } P - ( - 1 ) ^ { p ( S ) } \operatorname { tr } S$ ; confidence 0.889

153. h04636010.png ; $p \leq n$ ; confidence 0.889

154. l12004052.png ; $d_{- 1} + d _ { 0 } + d _ { 1 } = 1,$ ; confidence 0.889

155. c13001029.png ; $f _ { 0 } ^ { \prime \prime } ( \bar{c} ) < 0$ ; confidence 0.889

156. f12011096.png ; $\mathcal{P}_{*} ( K )$ ; confidence 0.889

157. w120090388.png ; $\widehat{M}$ ; confidence 0.889

158. b12022089.png ; $\xi = ( v , I )$ ; confidence 0.889

159. c120210122.png ; $\mathcal{L} [ \Lambda _ { n } ( \theta ) | P _ { n , \theta } ] \Rightarrow N \left( - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h , h ^ { \prime } \Gamma ( \theta ) h \right) , \mathcal{L} [ \Lambda _ { n } ( \theta ) | P _ { n , \theta _ { n } } ] \Rightarrow N \left( \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h , h ^ { \prime } \Gamma ( \theta ) h \right),$ ; confidence 0.889

160. b13007023.png ; $\operatorname{BS} ( 12,18 )$ ; confidence 0.889

161. a13013047.png ; $i$ ; confidence 0.889

162. e12006032.png ; $T Y$ ; confidence 0.889

163. c13025015.png ; $T _ { 1 } < \ldots < T _ { n }$ ; confidence 0.889

164. i130060154.png ; $x \geq a$ ; confidence 0.889

165. g1300408.png ; $\mathcal{H} ^ { m } \left( E \backslash \bigcup _ { i = 1 } ^ { \infty } f _ { i } ( \mathbf{R} ^ { m } ) \right) = 0.$ ; confidence 0.889

166. i13006041.png ; $\mathcal{S} \Rightarrow q$ ; confidence 0.889

167. k05584084.png ; $[ x , x ] < 0$ ; confidence 0.889

168. j1300703.png ; $\operatorname{Hol}( \Delta , \Omega )$ ; confidence 0.889

169. m1200604.png ; $\frac { \partial \overset{\rightharpoonup} { v } } { \partial t } + (\overset{\rightharpoonup}{ v } \nabla ) \overset{\rightharpoonup}{ v } = - \frac { 1 } { \rho } \nabla P - \frac { 1 } { 4 \pi \rho } [\overset{\rightharpoonup}{ B } \times \operatorname { rot } \overset{\rightharpoonup}{ B } ] , \frac { \partial s } { \partial t } + \overset{\rightharpoonup}{ v } \nabla s = 0,$ ; confidence 0.889

170. t13007046.png ; $h ( w ) : = g ( w ) / w$ ; confidence 0.889

171. l06003030.png ; $\alpha \equiv \Pi ( a )$ ; confidence 0.889

172. x12001028.png ; $x ^ { \sigma } = q ^ { - 1 } x q$ ; confidence 0.889

173. a12012051.png ; $( x ^ { \prime } , y ^ { \prime } ) \in \mathcal{J}$ ; confidence 0.889

174. j1300707.png ; $\operatorname{Hol}( \Delta , \Delta )$ ; confidence 0.889

175. b13006097.png ; $\| . \| _ { \infty }$ ; confidence 0.889

176. t12021077.png ; $p ( e )$ ; confidence 0.889

177. s08526049.png ; $\overline { D ^ { + } }$ ; confidence 0.889

178. k13007012.png ; $k = n q$ ; confidence 0.888

179. d03213020.png ; $X f$ ; confidence 0.888

180. n13005015.png ; $\operatorname{TD} _ { \mu } [ r , s ]$ ; confidence 0.888

181. d1200203.png ; $A _ { 2 } x \leq b _ { 2 }$ ; confidence 0.888

182. l12003059.png ; $\operatorname{Map}( X , Y ) _ { f }$ ; confidence 0.888

183. p11015046.png ; $x , z \in H$ ; confidence 0.888

184. d12028035.png ; $f \in A _ { 0 } ( \overline { \mathbf{C} } ^ { n } \backslash D )$ ; confidence 0.888

185. b13022088.png ; $| F ( u ) | \leq C _ { 1 } \rho ^ { 2 - N / p } | u | _ { p , 2 , T }$ ; confidence 0.888

186. t1300509.png ; $E _ { i } : \Lambda \rightarrow \Lambda$ ; confidence 0.888

187. b13004052.png ; $U _ { 1 } \supset V _ { 1 } \supset U _ { 2 } \supset V _ { 2 } \supset \ldots$ ; confidence 0.888

188. n13006015.png ; $\mu _ { k } \rightarrow \infty$ ; confidence 0.888

189. o13003021.png ; $\mu = ( 3 + i \sqrt { 3 } ) / 6$ ; confidence 0.888

190. h13002061.png ; $n \geq M$ ; confidence 0.888

191. d03025019.png ; $p _ { k } ( x )$ ; confidence 0.888

192. t130050101.png ; $\sigma _ { \text{p} } = \sigma _ { \text{l} } = \sigma _ { \pi } = \sigma _ { \delta } = \sigma _ { \text{r} } = \sigma _ { \text{T} } = \sigma ^ { \prime } = \sigma ^ { \prime \prime } = \widehat { \sigma },$ ; confidence 0.888

193. b12022069.png ; $u _ { f } \equiv \int f ( \xi ) d \xi - k \in \mathcal{U}$ ; confidence 0.888

194. t13004046.png ; $D \in \mathcal{D}$ ; confidence 0.888

195. o13006050.png ; $\mathfrak { V } = ( A _ { 1 } , A _ { 2 } , \mathcal{H} , \Phi , \mathcal{E} , \sigma _ { 1 } , \sigma _ { 2 } , \gamma , \widetilde { \gamma } )$ ; confidence 0.888

196. k13004010.png ; $x _ { i } \in \{ 0,1 \}$ ; confidence 0.888

197. a12007094.png ; $\lambda \in S _ { \theta _ { 0 } } , \quad t , s \in [ 0 , T ].$ ; confidence 0.888

198. b130040128.png ; $\operatorname{BM} ( X )$ ; confidence 0.888

199. b13012087.png ; $\operatorname { Lip } ( 1 / 2 )$ ; confidence 0.888

200. k13007027.png ; $L = N . 2 \pi$ ; confidence 0.888

201. s13054047.png ; $\{ a , b \} = 1$ ; confidence 0.888

202. q120070114.png ; $b c = c b , d a - a d = ( q - q ^ { - 1 } ) b c,$ ; confidence 0.888

203. w130080205.png ; $T _ { S } \sim t _ { s }$ ; confidence 0.887

204. b12052023.png ; $x _ { + } = x _ { c } - F ^ { \prime } ( x _ { 0 } ) ^ { - 1 } F ( x _ { c } ).$ ; confidence 0.887

205. j13004056.png ; $\operatorname { cr } ( D _ { L } )$ ; confidence 0.887

206. s12017060.png ; $\sim_i$ ; confidence 0.887

207. a01020066.png ; $A \oplus B$ ; confidence 0.887

208. j120020160.png ; $H _ { t } = h ( B _ { \operatorname { min } ( t , \tau )} )$ ; confidence 0.887

209. d120230112.png ; $u _ { i } = \left( \beta _ { i } \quad 1 \right) $ ; confidence 0.887

210. b120210121.png ; $\gamma \in \Delta _ { + }$ ; confidence 0.887

211. a12017010.png ; $b ( t ) = \int _ { 0 } ^ { + \infty } \beta ( a ) p ( a , t ) d a$ ; confidence 0.887

212. h12011027.png ; $\int _ { \sigma ( \Gamma ) } f ( z ) d z = 0.$ ; confidence 0.887

213. t12006030.png ; $\gamma \rho ( x ) ^ { 2 / 3 } = [ \Phi ( x ) - \mu ]_+ ,$ ; confidence 0.887

214. c027210120.png ; $x \in \Omega$ ; confidence 0.887

215. w12011079.png ; $A ^ { * } \sigma A = \sigma.$ ; confidence 0.887

216. a1200603.png ; $\Omega \subset \mathbf{R} ^ { m }$ ; confidence 0.887

217. s13062078.png ; $\mu = \mu _ { ac } + \mu _ { s } ,$ ; confidence 0.887

218. r13016032.png ; $\mathcal{C} ^ { \infty } ( \Omega ) / \mathcal{I} _ { S }$ ; confidence 0.887

219. t13021051.png ; $4 / ( 3 N / 2 )$ ; confidence 0.887

220. w120030141.png ; $\Sigma ( \Gamma )$ ; confidence 0.887

221. b11002037.png ; $b ( S l , v ) = \langle l , v \rangle$ ; confidence 0.887

222. s120230119.png ; $f ( \lambda ( X X ^ { \prime } ) )$ ; confidence 0.887

223. a13019052.png ; $8 _ { 18 }$ ; confidence 0.887

224. m13014096.png ; $\mathcal{D} = \mathcal{D} _ { j , k } ( a )$ ; confidence 0.887

225. r130080118.png ; $v _ { j } : = ( v , \varphi _ { j } ) _ { 0 }$ ; confidence 0.887

226. e12012066.png ; $y , \mu \in \mathbf{R} ^ { p }$ ; confidence 0.887

227. e03500096.png ; $X ^ { n } = X \times \ldots \times X$ ; confidence 0.887

228. f04155035.png ; $v = 1$ ; confidence 0.886

229. i0527005.png ; $\dot { x } = A ( t ) x$ ; confidence 0.886

230. q12001088.png ; $s \mapsto \widetilde{\pi} ( s )$ ; confidence 0.886

231. n1300404.png ; $a ^ { n } b ^ { n }$ ; confidence 0.886

232. o1300107.png ; $\Gamma u = 0 \text { on } S,$ ; confidence 0.886

233. c02475024.png ; $C = 0$ ; confidence 0.886

234. b120420113.png ; $G = \mathbf{Z} _ { 2 } \times \mathbf{Z} _ { 2 } \times \mathbf{Z} _ { 2 }$ ; confidence 0.886

235. b13020067.png ; $\hat { \mathfrak { g } } ( A )$ ; confidence 0.886

236. h12012046.png ; $( Z , d_\text{Z} )$ ; confidence 0.886

237. b120210122.png ; $w _ { 1 } = \sigma _ { \gamma } w _ { 2 }$ ; confidence 0.886

238. a120260103.png ; $( X )$ ; confidence 0.886

239. t12013047.png ; $\tau _ { - i } = 0$ ; confidence 0.886

240. q1300208.png ; $| 0 \rangle$ ; confidence 0.886

241. a01169033.png ; $x = y$ ; confidence 0.886

242. n066630122.png ; $H _ { p } ^ { r - 1 / p } ( \partial \Omega )$ ; confidence 0.886

243. e12012037.png ; $\sum _ { j } h _ { ij } > 0$ ; confidence 0.886

244. b13007026.png ; $\operatorname{BS} ( m , n )$ ; confidence 0.886

245. m13025041.png ; $\mathcal{M} _ { 2 } ( \mathbf{R} ^ { n } ) = \{$ ; confidence 0.886

246. m12011054.png ; $\pi _ { 1 } ( M ) \neq \mathbf{Z} _ { 2 }$ ; confidence 0.886

247. v120020205.png ; $r = p$ ; confidence 0.886

248. s1304404.png ; $W \wedge X$ ; confidence 0.886

249. r130070176.png ; $R ( L ) = H _ { K }$ ; confidence 0.886

250. d03033031.png ; $H ^ { * } ( A _ { \text{dR} } ( X ) )$ ; confidence 0.886

251. k12008029.png ; $Q ( \partial / \partial x ) ( f ) \equiv 0$ ; confidence 0.886

252. i1300209.png ; $I _ { A } = 0$ ; confidence 0.886

253. s13064071.png ; $\int _ { - \infty } ^ { \infty } | t | | \hat{s} ( t ) | ^ { 2 } d t < \infty.$ ; confidence 0.886

254. v13011050.png ; $e ^ { \lambda t }$ ; confidence 0.886

255. f12008026.png ; $P ( G )$ ; confidence 0.886

256. d12016041.png ; $C ( S ) \otimes \pi _ { 0 } ( T ) + \pi _ { 0 } ( S ) \otimes C ( T )$ ; confidence 0.886

257. i1200808.png ; $M = \sum _ { i = 1 } ^ { N } S _ { i }$ ; confidence 0.886

258. d12014011.png ; $x = u + a / u$ ; confidence 0.886

259. d12015021.png ; $q = 2$ ; confidence 0.885

260. j12001038.png ; $\operatorname { deg } F _ { 1 }$ ; confidence 0.885

261. b13020043.png ; $[ e _ { i } e _ { j } ] = [ f _ { i } f _ { j } ] = 0$ ; confidence 0.885

262. j13002014.png ; $\lambda = \mathsf{E} ( X ),$ ; confidence 0.885

263. b13029034.png ; $A _ { \mathfrak{p} }$ ; confidence 0.885

264. d13017045.png ; $\lambda _ { k } \geq \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } } \text { for } k = 1,2, \dots . $ ; confidence 0.885

265. w12021047.png ; $( s , k , B _ { m } )$ ; confidence 0.885

266. c12008052.png ; $E \alpha + A \beta = I _ { n }$ ; confidence 0.885

267. l13001085.png ; $N > N_0$ ; confidence 0.885

268. f12019036.png ; $1 \neq h \in H$ ; confidence 0.885

269. t12001030.png ; $\mathcal{S}$ ; confidence 0.885

270. a11015014.png ; $a ( t )$ ; confidence 0.885

271. a13017025.png ; $\mathcal{B} \circ \Pi$ ; confidence 0.885

272. a12005024.png ; $u ( 0 ) = u _ { 0 },$ ; confidence 0.885

273. w120110115.png ; $\chi ( x , \xi ) = ( x + x _ { 0 } , \xi + \xi _ { 0 } )$ ; confidence 0.885

274. t12020093.png ; $\min_{ z _ { j }} | z _ { j } | = 1$ ; confidence 0.885

275. a13024085.png ; $\gamma _ { i j }$ ; confidence 0.884

276. j13001042.png ; $| f | = | f |_{ -} + | f |_{+}$ ; confidence 0.884

277. m12011032.png ; $F ^ { n + 1 } \subset M$ ; confidence 0.884

278. v13011080.png ; $D = \rho \frac { \Gamma b } { l } ( V - 2 U ) + \rho \frac { \Gamma ^ { 2 } } { 2 \pi l } \approx$ ; confidence 0.884

279. a13028013.png ; $\operatorname { dn } ( u | k )$ ; confidence 0.884

280. w13008086.png ; $w \rightarrow \infty$ ; confidence 0.884

281. m12012018.png ; $[A,f ] [ B , g ] = [ B A , f g ].$ ; confidence 0.884

282. h1300307.png ; $s _ { i + j - 1} = ( i + j - 1 ) ^ { - 1 }$ ; confidence 0.884

283. d1100807.png ; $[ L : K ] = d . e . f$ ; confidence 0.884

284. s12015042.png ; $G ( S )$ ; confidence 0.884

285. t1300501.png ; $\Lambda \equiv \Lambda [ e ] \equiv \Lambda _ { n } [ e ]$ ; confidence 0.884

286. a130240334.png ; $\Gamma = \mathbf{B} \mathbf{X}_4$ ; confidence 0.884

287. a130240239.png ; $ \operatorname{MS} _ { e }$ ; confidence 0.884

288. c12019044.png ; $\mathcal{T} ( M )$ ; confidence 0.884

289. a13029059.png ; $ \operatorname{QH} ^ { * } ( M )$ ; confidence 0.884

290. b1200509.png ; $A : E \times \ldots \times E \rightarrow \mathbf{C}$ ; confidence 0.884

291. e120260140.png ; $v , p , x$ ; confidence 0.884

292. d13003013.png ; $\int _ { - \infty } ^ { \infty } x ^ { k } \psi _ { N } ( x ) d x = 0,0 \leq k \leq N.$ ; confidence 0.884

293. c12008013.png ; $A _ { 1 } \in C ^ { m \times m }$ ; confidence 0.884

294. b130300161.png ; $\langle G , B \rangle = G \times B$ ; confidence 0.884

295. f04188072.png ; $V _ { m }$ ; confidence 0.883

296. m13025038.png ; $\mathcal{M}_ { 1 } ( \mathbf{R} ^ { n } ) = \{$ ; confidence 0.883

297. i13003093.png ; $k _ { t } ( x , y ) = \operatorname { str } ( e ^ { - t D ^ { 2 } } ) = \operatorname { tr } ( e ^ { - t D _ { + } ^ { * } D _ { + } } ) - \operatorname { tr } ( e ^ { - t D _ { + } D _ { + } ^ { * } } )$ ; confidence 0.883

298. b12020013.png ; $S f \in \mathcal{M}$ ; confidence 0.883

299. b12024016.png ; $g : \overline { U } \rightarrow V$ ; confidence 0.883

300. a120270102.png ; $O _ { K } [G]$ ; confidence 0.883

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/34. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/34&oldid=45928