User:Maximilian Janisch/latexlist/latex/NoNroff/28
List
1.
; $| d \varphi |$ ; confidence 0.948
2.
; $\sum _ { k = 1 } ^ { \infty } \frac { \zeta ( 2 k ) } { k ( 2 k + 1 ) 2 ^ { 4 k } } = \operatorname { log } ( \frac { \pi } { 2 } ) - 1 + \frac { 2 G } { \pi },$ ; confidence 0.948
3.
; $y ^ { * } = \lambda ^ { * } x ^ { * }$ ; confidence 0.948
4.
; $- 2 * \partial _ { \zeta } N ( \zeta , z )$ ; confidence 0.948
5.
; $d = 2$ ; confidence 0.948
6.
; $x ^ { - 1 } H x \subseteq G$ ; confidence 0.948
7.
; $p _ { 1 } p _ { 2 } p _ { 3 }$ ; confidence 0.948
8.
; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ ; confidence 0.948
9.
; $q ( x ) \in L _ { 1,1 } ( \mathbf{R} )$ ; confidence 0.947
10.
; $\{ X _ { n } \} \subset X$ ; confidence 0.947
11.
; $\Leftrightarrow \left[ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } \right] = 0,$ ; confidence 0.947
12.
; $| i \nabla + A ( x ) | ^ { 2 } + \sigma . B ( x ),$ ; confidence 0.947
13.
; $g = 0$ ; confidence 0.947
14.
; $M \times M$ ; confidence 0.947
15.
; $Y = \operatorname { ker } ( \pi ) \oplus \operatorname { im } ( \pi )$ ; confidence 0.947
16.
; $X = \mathcal{M} ^ { 1 } - \operatorname { lim } _ { N \rightarrow \infty } \sum _ { n = - N } ^ { n = N } c _ { n } A ^ { n },$ ; confidence 0.947
17.
; $[ x , y ] \backslash \{ x , y \}$ ; confidence 0.947
18.
; $I ( \xi , \xi ^ { \prime } )$ ; confidence 0.947
19.
; $\Delta ^ { 2 } u _ { 1 } = \Lambda _ { 1 } u _ { 1 } \text { in } \Omega$ ; confidence 0.947
20.
; $\mathcal{K} ^ { \perp }$ ; confidence 0.947
21.
; $P , Q \in A [ X ]$ ; confidence 0.947
22.
; $s \in ( 1 / 2 ) \mathbf{Z}$ ; confidence 0.947
23.
; $q _ { 1 } ( x ) = q _ { 2 } ( x )$ ; confidence 0.947
24.
; $( \partial / \partial x ) - P _ { 0 } z$ ; confidence 0.947
25.
; $\mathcal{P} _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } \left( \frac { d } { d x } \right) ^ { i }$ ; confidence 0.947
26.
; $a \neq 0$ ; confidence 0.947
27.
; $U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) },$ ; confidence 0.947
28.
; $E ( \Delta ) \mathcal{K} \subset \mathcal{D} ( A )$ ; confidence 0.947
29.
; $\| \phi - f \| _ { L^\infty } = \| H _ { \phi } \|$ ; confidence 0.947
30.
; $ \operatorname{bfgsrec} ( n - 1 , \{ s _ { k } \} , \{ y _ { k } \} , H _ { 0 } ^ { - 1 } , d )$ ; confidence 0.947
31.
; $( J ^ { t } a ) ( x , \xi ) =$ ; confidence 0.947
32.
; $G ( u ) = \int a ( \xi ) H ( M ( u , \xi ) , \xi ) d \xi.$ ; confidence 0.947
33.
; $T ( h ) = F \times [ 0,1 ] / \{ ( x , 0 ) \sim ( h ( x ) , 1 ) : x \in F \},$ ; confidence 0.947
34.
; $\omega ( z )$ ; confidence 0.947
35.
; $y _ { i } = x _ { i } + \epsilon _ { i }$ ; confidence 0.947
36.
; $W ^ { k } E _ { \Phi } ( \mathbf{R} ^ { n } )$ ; confidence 0.947
37.
; $x y$ ; confidence 0.947
38.
; $V ^ { \text{H} } V = I$ ; confidence 0.947
39.
; $V ^ { G }$ ; confidence 0.947
40.
; $\{ A _ { j } \}$ ; confidence 0.947
41.
; $p \leq q$ ; confidence 0.947
42.
; $O _ { K _ { s } [ \bar{\sigma} ] } $ ; confidence 0.947
43.
; $\beta \gamma = \gamma \beta + ( 1 - q ^ { - 2 } ) \alpha ( \delta - \alpha ) , \delta \beta = \beta \delta + ( 1 - q ^ { - 2 } ) \alpha \beta,$ ; confidence 0.947
44.
; $u _ { n } = \frac { y _ { n } } { \| s _ { n } \| _ { 2 } } \text { and } v _ { n } = \frac { s _ { n } } { \| s _ { n } \| _ { 2 } }.$ ; confidence 0.947
45.
; $\leq - \operatorname { log } ( \operatorname { max } \{ \operatorname { dist } ( z , \partial \Omega ) , \operatorname { dist } ( w , \partial \Omega ) \} ).$ ; confidence 0.947
46.
; $A u = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ( u , \varphi _ { j } ) \varphi _ { j } ( x )$ ; confidence 0.947
47.
; $Q ( f ) = \psi ( \rho _ { f } , T _ { f } ) ( M _ { f } - f )$ ; confidence 0.947
48.
; $\frac { d f } { d t _ { s } } = \kappa \partial _ { s } f + \{ H _ { s } , f \}$ ; confidence 0.947
49.
; $b ( . )$ ; confidence 0.947
50.
; $\chi _ { \lambda ^ { \prime } } \preceq \chi _ { \lambda }$ ; confidence 0.947
51.
; $b ^ { - 1 } a ^ { - 1 } b a b ^ { - 1 } a ^ { - 1 } b a b ^ { - 1 }$ ; confidence 0.947
52.
; $( \mathcal{H} , \mathcal{H} )$ ; confidence 0.946
53.
; $K _ { i } = \operatorname { lim } _ { z \rightarrow z _ { i } } \left[ ( z - z _ { i } ) \frac { h ( z ) } { g ( z ) } \right].$ ; confidence 0.946
54.
; $R _ { 1 } ^ { ( i ) } ( z ) = \frac { R _ { 0 } ^ { ( i ) } ( z ) - 1 } { z },$ ; confidence 0.946
55.
; $c _ { 1 } ( R ) = \operatorname { Dom } ( R ) \times U$ ; confidence 0.946
56.
; $\mathfrak { H } _ { + } \subset \mathfrak { H } \subset \mathfrak { H } _ { - }$ ; confidence 0.946
57.
; $( \frac { \partial } { \partial \lambda } ) ^ { n _ { 1 } + l } [ u ( z , \lambda ) ( \lambda - \lambda _ { 2 } ) ^ { n _ { 1 } } ] =$ ; confidence 0.946
58.
; $\beta \in \Sigma$ ; confidence 0.946
59.
; $f ( d ) = \sum w _ { i } d _ { i }$ ; confidence 0.946
60.
; $g _ { \mu \nu } = \left( \begin{array} { c c c c } { 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } \end{array} \right).$ ; confidence 0.946
61.
; $L ( \pi - x ) = \pi \operatorname { ln } 2 - L ( x ),$ ; confidence 0.946
62.
; $S \subset \mathbf{Z} ^ { 0 }$ ; confidence 0.946
63.
; $x \in [ 0 , L ]$ ; confidence 0.946
64.
; $( f , \phi ) ^ { \leftarrow } | _ { \sigma } : \tau \leftarrow \sigma$ ; confidence 0.946
65.
; $0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0$ ; confidence 0.946
66.
; $H _ { \overset{\rightharpoonup}{ \theta } }$ ; confidence 0.946
67.
; $E \subset S$ ; confidence 0.946
68.
; $g _ { 1 } \leq \ldots \leq g _ { k }$ ; confidence 0.946
69.
; $p _ { k } ( x ) \in C [ a , b ]$ ; confidence 0.946
70.
; $\rho ( u )$ ; confidence 0.946
71.
; $\mathbf{R} ^ { 3 }$ ; confidence 0.946
72.
; $C ( \mathcal S )$ ; confidence 0.946
73.
; $\mathbf z = \Gamma \mathbf y $ ; confidence 0.946
74.
; $\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$ ; confidence 0.946
75.
; $D ^ { \alpha } f$ ; confidence 0.946
76.
; $T _ { 2 } \in \Re ( C _ { 2 } )$ ; confidence 0.946
77.
; $\pi ( X_{*} )$ ; confidence 0.946
78.
; $= \frac { \Gamma ( \alpha + \beta ) } { \Gamma ( \alpha ) \Gamma ( \beta ) } \int _ { 0 } ^ { 1 } \tau ( x + ( y - x ) t ) t ^ { \beta - 1 } ( 1 - t ) ^ { \alpha - 1 } d t +$ ; confidence 0.946
79.
; $i = 1,2$ ; confidence 0.946
80.
; $\Delta = \pi ^ { k ^ { * } } ( \Delta )$ ; confidence 0.946
81.
; $[ f , g ] = \int _ { - \infty } ^ { - \infty } f \bar{g} d \sigma$ ; confidence 0.946
82.
; $\operatorname{NP} = \operatorname{SO} ( \exists )$ ; confidence 0.946
83.
; $H = ( \kappa _ { 1 } + \kappa _ { 2 } ) / 2$ ; confidence 0.946
84.
; $| \mu ( E ) | < \varepsilon$ ; confidence 0.946
85.
; $u \in H ^ { \infty }$ ; confidence 0.946
86.
; $\operatorname{GL} ^ { 2 } ( n ) \rightarrow \operatorname{GL} ^ { 1 } ( n )$ ; confidence 0.946
87.
; $f ( C )$ ; confidence 0.946
88.
; $H ( r , 0 ) = \sum _ { n = 0 } ^ { \infty } a _ { n } H _ { n } ( r , 0 )$ ; confidence 0.946
89.
; $( X , \mathbf{R} )$ ; confidence 0.946
90.
; $Y _ { \operatorname{id} } = \Sigma \times S ^ { 1 }$ ; confidence 0.946
91.
; $\Pi ( a ) = \operatorname { exp } \left( - \int _ { 0 } ^ { a } \mu ( \sigma ) d \sigma \right)$ ; confidence 0.946
92.
; $K = 1$ ; confidence 0.946
93.
; $d _ { 1 } = \frac { \operatorname { log } ( S ( t ) / K ) + ( r + \sigma ^ { 2 } / 2 ) ( T - t ) } { \sigma \sqrt { T - t } },$ ; confidence 0.946
94.
; $Z ^ { 7 / 3 }$ ; confidence 0.946
95.
; $\Delta g = g \otimes g$ ; confidence 0.946
96.
; $p ^ { k }$ ; confidence 0.945
97.
; $R = \mathbf{Z}$ ; confidence 0.945
98.
; $( x , \varepsilon ) \in \mathbf{R} ^ { n } \times ( 0 , \infty )$ ; confidence 0.945
99.
; $= \left( 4 q ^ { 2 t } \frac { q ^ { 2 t } - 1 } { q ^ { 2 } - 1 } , q ^ { 2 t - 1 } \left[ \frac { 2 ( q ^ { 2 t } - 1 ) } { q + 1 } + 1 \right] , q ^ { 2 t - 1 } ( q - 1 ) \frac { q ^ { 2 t - 1 } + 1 } { q + 1 } , q ^ { 4 t - 2 } \right),$ ; confidence 0.945
100.
; $S : B \rightarrow B$ ; confidence 0.945
101.
; $\overline { f } ( [ g ] ) : X \rightarrow P$ ; confidence 0.945
102.
; $V ( \mathfrak{a} , \mathfrak{p} )$ ; confidence 0.945
103.
; $\operatorname{SH} ^ { * } ( M , \omega , \phi )$ ; confidence 0.945
104.
; $\varphi ( u ) = u ^ { p }$ ; confidence 0.945
105.
; $a + b$ ; confidence 0.945
106.
; $a ^ { 2_0 } \neq 0$ ; confidence 0.945
107.
; $m ( \Xi ) = 1$ ; confidence 0.945
108.
; $\beta > 9 / 56 = 0.1607 \dots$ ; confidence 0.945
109.
; $i \neq 1 , \operatorname { dim } A$ ; confidence 0.945
110.
; $L _ { 2 } ( G )$ ; confidence 0.945
111.
; $s _ { i +j-1 } $ ; confidence 0.945
112.
; $( n - r ) ^ { - 1 } \mathbf{M}
_ { \mathsf{E} }$ ; confidence 0.945
113.
; $\Psi \circ f = F _ { K } \circ \Phi$ ; confidence 0.945
114.
; $ \eta $ ; confidence 0.945
115.
; $F _ { m }$ ; confidence 0.945
116.
; $F ^ { 4 } \in \mathcal{N} \mathcal{P}$ ; confidence 0.945
117.
; $( u , v ) _ { + } = ( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } v ) _ { 0 }$ ; confidence 0.945
118.
; $K _ { i } = \frac { 1 } { ( r - 1 ) ! } \operatorname { lim } _ { z \rightarrow z _ { i } } \frac { d ^ { n } } { d z ^ { r- 1 } } \left[ ( z - z _ { i } ) ^ { r } \frac { h ( z ) } { g ( z ) } \right] .$ ; confidence 0.945
119.
; $f : H \rightarrow \mathbf{R} \cup \{ \infty \}$ ; confidence 0.945
120.
; $\sigma ^ { 0 } ( p ^ { \alpha } ) = \sigma ( p ^ { \alpha } )$ ; confidence 0.945
121.
; $|.|$ ; confidence 0.945
122.
; $\sigma ^ { 2 k * } \mathcal{E} ( L ) = 0$ ; confidence 0.945
123.
; $f_{( r )} ( x _ { 0 } ) = f ^ { ( r ) } ( x _ { 0 } )$ ; confidence 0.945
124.
; $| S ( z ) | \leq 1$ ; confidence 0.945
125.
; $\operatorname { Int } ( g ) : G \rightarrow G$ ; confidence 0.945
126.
; $M ( r _ { 1 } , r _ { 2 } ) > \left( \frac { \pi } { 4 } \right) ^ { 2 r _ { 2 } } \left( \frac { n ^ { n } } { n ! } \right) ^ { 2 },$ ; confidence 0.945
127.
; $H \in \mathcal{X}$ ; confidence 0.945
128.
; $\forall \alpha ^ { \prime } , \alpha \in S ^ { 2 }$ ; confidence 0.945
129.
; $h ( \theta ) = \mathsf{E} _ { \theta } [ H ( \theta , X ) ]$ ; confidence 0.945
130.
; $[ q ]$ ; confidence 0.945
131.
; $g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { s } - \frac { m - x } { s ^ { 2 } } } & { \text { if } m - s \leq x \leq m, } \\ { \frac { 1 } { s } - \frac { x - m } { s ^ { 2 } } } & { \text { if } m \leq x \leq m + s. } \end{array} \right.$ ; confidence 0.945
132.
; $S A ( t ) S ^ { - 1 } = A ( t ) + B ( t )$ ; confidence 0.945
133.
; $A _ { \operatorname{dR} } ( X )$ ; confidence 0.945
134.
; $U ( a , R )$ ; confidence 0.945
135.
; $L ( s , \chi_{- 3} )$ ; confidence 0.945
136.
; $\bar{X} _ { n } = 1 / n ( X _ { 1 } + \ldots + X _ { n } )$ ; confidence 0.945
137.
; $= \prod _ { m = 2 } ^ { \infty } ( 1 - m ^ { - z } ) ^ { - P ( m ) }.$ ; confidence 0.945
138.
; $F / \mathbf Q $ ; confidence 0.945
139.
; $k \rightarrow \infty,$ ; confidence 0.945
140.
; $f \in \Gamma ( L ^ { 2 } ( \mathbf{R} ) )$ ; confidence 0.944
141.
; $p ^ { m } - 1$ ; confidence 0.944
142.
; $d = n - m > 0$ ; confidence 0.944
143.
; $M _ { \varphi }$ ; confidence 0.944
144.
; $( \varphi _ { n } ) _ { n = 0 } ^ { \infty }$ ; confidence 0.944
145.
; $d < n$ ; confidence 0.944
146.
; $\rho ( X _ { 1 } )$ ; confidence 0.944
147.
; $d ^ { n } : C ^ { n } ( \mathcal{C} , M ) \rightarrow C ^ { n + 1 } ( \mathcal{C} , M )$ ; confidence 0.944
148.
; $g = \frac { ( n - 1 ) ( n - 2 ) } { 2 } -\#\text{double points},$ ; confidence 0.944
149.
; $d \Omega = \varphi \psi _ { x } d x + \psi \varphi_y d y.$ ; confidence 0.944
150.
; $\{ a , b , c , d \}$ ; confidence 0.944
151.
; $\epsilon _ { 1 } = \ldots \epsilon _ { p } = 1$ ; confidence 0.944
152.
; $P _ { L } ( \square )$ ; confidence 0.944
153.
; $[ - g , g ]$ ; confidence 0.944
154.
; $\widehat { f } ( \alpha , p ) : = R f$ ; confidence 0.944
155.
; $\mathbf{R} ^ { k }$ ; confidence 0.944
156.
; $\frac { \partial v } { \partial t } - 6 v ^ { 2 } \frac { \partial v } { \partial x } + \frac { \partial ^ { 3 } v } { \partial x ^ { 3 } } = 0$ ; confidence 0.944
157.
; $\mathcal{S} ( \mathbf{R} ^ { n } ) \times \mathcal{S} ( \mathbf{R} ^ { n } )$ ; confidence 0.944
158.
; $X_j$ ; confidence 0.944
159.
; $q - 1$ ; confidence 0.944
160.
; $y = - x + ( x ^ { 3 } / 3 ) + ( \dot { x } / \mu )$ ; confidence 0.944
161.
; $\operatorname{BS} ( 1 , n )$ ; confidence 0.944
162.
; $y = r \operatorname { sin } \theta \operatorname { sin } \phi$ ; confidence 0.944
163.
; $e _ { j } ^ { n _ { i j } } \in \mathcal{E} _ { A , K [ \lambda ] }$ ; confidence 0.944
164.
; $G ( K )$ ; confidence 0.944
165.
; $\operatorname{BS} ( 1 , m )$ ; confidence 0.944
166.
; $\alpha / \beta$ ; confidence 0.944
167.
; $K ( a , b )$ ; confidence 0.944
168.
; $\mathcal{A} _ { b } ( B _ { E } ) \equiv$ ; confidence 0.944
169.
; $k = n + 1$ ; confidence 0.944
170.
; $= \int_{T} \int _ { T } d m ( t ) d m ( s ) F ( t ) \overline { G ( s ) } ( h ( s , x ) , h ( t , x ) ) _ { H } =$ ; confidence 0.944
171.
; $x , y \in E$ ; confidence 0.944
172.
; $N _ { V }$ ; confidence 0.944
173.
; $\mathbf{a} \in \mathbf{R} ^ { n } \backslash \{ 0 \}$ ; confidence 0.944
174.
; $\mathbf{F} _ { q } [ T ]$ ; confidence 0.943
175.
; $W E$ ; confidence 0.943
176.
; $( f ( x ) , K ( x , y ) ) = \left( \sum _ { j = 1 } ^ { J } K ( x , y _ { j } ) c _ { j } , K ( x , y ) \right) =$ ; confidence 0.943
177.
; $\mathcal{L} =$ ; confidence 0.943
178.
; $B _ { 2 } ( G )$ ; confidence 0.943
179.
; $\theta ( . , \lambda )$ ; confidence 0.943
180.
; $u , v \in A$ ; confidence 0.943
181.
; $u ( 0 ) = u _ { 0 } \in D ( \mathcal{A} ) , f \in C ( [ 0 , T ] ; D ( A ) ).$ ; confidence 0.943
182.
; $G / C _ { G } ( \langle x \rangle ^ { G } )$ ; confidence 0.943
183.
; $H ( A ^ { c } )$ ; confidence 0.943
184.
; $E _ { m + 1} $ ; confidence 0.943
185.
; $a ( \xi ) = \xi$ ; confidence 0.943
186.
; $2 g - 2 = \nu _ { i } ( 2 g _ { i } - 2 ) + \mathfrak { D } _ { i },$ ; confidence 0.943
187.
; $0 < a < 1$ ; confidence 0.943
188.
; $x ^ { \pm } \in L _ { 0 } \cap L _ { 1 }$ ; confidence 0.943
189.
; $L ^ { m } + Q$ ; confidence 0.943
190.
; $( f _ { 1 } ( x ) - f _ { 1 } ( y ) ) . ( f _ { 2 } ( x ) - f _ { 2 } ( y ) ) \geq 0$ ; confidence 0.943
191.
; $+ z ^ { \lambda } \sum _ { j = 1 } ^ { \infty } z ^ { j } \left[ c _ { j } ( \lambda ) \pi ( \lambda + j ) + \sum _ { k = 0 } ^ { j - 1 } c _ { k } ( \lambda ) p _ { j - k } ( \lambda + k ) \right].$ ; confidence 0.943
192.
; $\omega = \pi / 6$ ; confidence 0.943
193.
; $T _ { p q }$ ; confidence 0.943
194.
; $- F _ { n + 1 } ( X , q _ { i } + \sigma \eta , p _ { n + 1 } ) ),$ ; confidence 0.943
195.
; $\operatorname{Aut}( G )$ ; confidence 0.943
196.
; $\mu ( \square ^ { g } m ) = g \mu ( m ) g ^ { - 1 } , \square ^ { \mu ( m ) } m ^ { \prime } = m m ^ { \prime } m ^ { - 1 },$ ; confidence 0.943
197.
; $= 2 \operatorname { cos } ( n \alpha ) = 2 T _ { n } ( \operatorname { cos } \alpha ) = 2 T _ { n } \left( \frac { x } { 2 } \right).$ ; confidence 0.943
198.
; $X = \mathbf{R} ^ { 2 }$ ; confidence 0.943
199.
; $N _ { f } = 0$ ; confidence 0.943
200.
; $J = 60 G _ { 4 } ^ { 3 } / \Delta$ ; confidence 0.943
201.
; $m | \neq | n$ ; confidence 0.943
202.
; $K \geq $ ; confidence 0.943
203.
; $h ( G )$ ; confidence 0.943
204.
; $i \neq - j$ ; confidence 0.943
205.
; $L ^ { + } = D ^ { + } - A ^ { \prime }$ ; confidence 0.943
206.
; $P ( x )$ ; confidence 0.943
207.
; $S \subset G$ ; confidence 0.943
208.
; $( T f _ { n } ) _ { n = 1 } ^ { \infty } \subset M$ ; confidence 0.943
209.
; $0 \in \sigma _ { \text{T} } ( A , \mathcal{H} )$ ; confidence 0.943
210.
; $\kappa _ { p } ( f ) = K _ { p } ( \operatorname { Re } ( f ) ) + i K _ { p } ( \operatorname { Im } ( f ) )$ ; confidence 0.943
211.
; $\text{l} \cup \{ \infty \}$ ; confidence 0.942
212.
; $\{ C _ { i } \}$ ; confidence 0.942
213.
; $X ^ { ( r ) }$ ; confidence 0.942
214.
; $\otimes : L \times L \rightarrow L$ ; confidence 0.942
215.
; $A = \times _ { i \in I } A$ ; confidence 0.942
216.
; $\Phi ^ { ( j ) } = O ( | Z | )$ ; confidence 0.942
217.
; $\widehat { \theta }_n$ ; confidence 0.942
218.
; $X_r$ ; confidence 0.942
219.
; $\operatorname{BS} ( 1,2 )$ ; confidence 0.942
220.
; $T _ { y } Y$ ; confidence 0.942
221.
; $\zeta _ { 1 } = \ldots = \zeta _ { q } = 0$ ; confidence 0.942
222.
; $F : \mathcal{M} f \rightarrow \mathcal{M} f$ ; confidence 0.942
223.
; $V \times V$ ; confidence 0.942
224.
; $\operatorname{GF} _ { 4 }$ ; confidence 0.942
225.
; $\alpha : y \rightarrow x$ ; confidence 0.942
226.
; $B ( x )$ ; confidence 0.942
227.
; $\partial \phi$ ; confidence 0.942
228.
; $( a , b )$ ; confidence 0.942
229.
; $\lambda ( x , y ) = \operatorname { sup } \{ \lambda : y \geq \lambda x \}.$ ; confidence 0.942
230.
; $= 6 \int _ { 0 } ^ { 1 } C _ { X , Y } ( u , u ) d u - 2.$ ; confidence 0.942
231.
; $S ^ { 2 }$ ; confidence 0.942
232.
; $\mathcal{S} _ { n } = s _ { n } + \theta ^ { 2 } F _ { n }$ ; confidence 0.942
233.
; $C ( K )$ ; confidence 0.942
234.
; $\Lambda ( M , s ) = \varepsilon ( M , s ) \Lambda ( M ^ { \vee } , 1 - s )$ ; confidence 0.942
235.
; $g a = b$ ; confidence 0.942
236.
; $A v = \lambda M v$ ; confidence 0.942
237.
; $| y ^ { \prime } - y | \leq | x - y | / 2$ ; confidence 0.942
238.
; $g \mapsto a _ { n } ( g )$ ; confidence 0.942
239.
; $\nabla g = 0 \in \otimes ^ { 3 } \mathcal{E}$ ; confidence 0.942
240.
; $M ( \mathcal{E} ) = L ( \mathcal{E} ) ^ { * }$ ; confidence 0.942
241.
; $\varphi ( a , 0,1 ) = 0 , \varphi ( a , 0,2 ) = 1,$ ; confidence 0.942
242.
; $\Psi _ { 1 } ( z ) = e ^ { \sum _ { 1 } ^ { \infty } x _ { i } z ^ { i } } S _ { 1 } \chi ( z ) =$ ; confidence 0.942
243.
; $( h _ { j } ) ^ { * } ( M _ { i j } ^ { \beta } ) = ( h _ { i } ^ { - 1 } M _ { i j } ^ { \beta } h _ { j } )$ ; confidence 0.942
244.
; $\mu ^ { ( t + 1 ) } = \frac { \sum _ { i } w _ { i } ^ { ( t + 1 ) } y _ { i } } { \sum _ { i } w _ { i } ^ { ( t + 1 ) } },$ ; confidence 0.942
245.
; $L \in \mathcal{N} \mathcal{P}$ ; confidence 0.942
246.
; $K ( x ) \approx L ( x ) = \{ x \approx T \}$ ; confidence 0.942
247.
; $K ( \Gamma ) \approx L ( \Gamma ) = \{ \kappa _ { j } ( \psi ) \approx \lambda _ { j } ( \psi ) : \psi \in \Gamma , j \in J \}$ ; confidence 0.942
248.
; $M _ { 0 } \times S ^ { 1 } \approx M _ { 1 } \times S ^ { 1 }$ ; confidence 0.942
249.
; $\beta ( t )$ ; confidence 0.942
250.
; $\Psi ^ { - 1 }$ ; confidence 0.942
251.
; $( f ^ { * } g ) ( x ) = \int _ { 1 } ^ { \infty } \int _ { 1 } ^ { \infty } S ( x , y , t ) f ( t ) g ( y ) d t d y,$ ; confidence 0.942
252.
; $x = r \operatorname { sin } \theta \operatorname { cos } \phi$ ; confidence 0.941
253.
; $z b = x b $ ; confidence 0.941
254.
; $X \times _ { G } E G \rightarrow B G,$ ; confidence 0.941
255.
; $\Gamma \backslash X$ ; confidence 0.941
256.
; $S ( g u ^ { k } ) = g S ( u ^ { k } ) , \quad g \in \operatorname{GL} ^ { k } ( n ) , \quad u ^ { k } \in M _ { k }.$ ; confidence 0.941
257.
; $ \mathbf{G} = ( \mathbf{V} , \mathbf{E} )$ ; confidence 0.941
258.
; $\sum _ { k = 0 } ^ { \infty } c _ { k } z ^ { k }$ ; confidence 0.941
259.
; $\{ \alpha _ { n } \} \subseteq \{ n \}$ ; confidence 0.941
260.
; $\frac { I - \Theta _ { \Delta } ( z ) \Theta _ { \Delta } ( w ) ^ { * } } { 1 - z \overline { w } } = G ( I - z T ) ^ { - 1 } ( I - \overline { w } T ^ { * } ) ^ { - 1 } G ^ { * }.$ ; confidence 0.941
261.
; $F ( t , 1 - t ) = \| t x + ( 1 - t ) y \| \leq 1$ ; confidence 0.941
262.
; $P \subset [ a , b ]$ ; confidence 0.941
263.
; $( \frac { \partial } { \partial \lambda } ) ^ { m _ { j } + l } \left[ u ( z , \lambda ) ( \lambda - \lambda _ { j } ) ^ { m _ { j } } \right] =$ ; confidence 0.941
264.
; $L ^ { 2 } ( \mathbf{R} ^ { 2 n } )$ ; confidence 0.941
265.
; $x _ { i } = x _ { j } x _ { k } x _ { j } ^ { - 1 }$ ; confidence 0.941
266.
; $L _ { \Omega } ( f )$ ; confidence 0.941
267.
; $C = \mathbf{Z} ( Q )$ ; confidence 0.941
268.
; $n^{\prime 0 }$ ; confidence 0.941
269.
; $R ( G )$ ; confidence 0.941
270.
; $S ^ { k } \times D ^ { m - k }$ ; confidence 0.941
271.
; $P ( t , x ; D _ { t } , D _ { x } ) u =$ ; confidence 0.941
272.
; $\alpha _ { k } = \int _ { - \infty } ^ { \infty } x ^ { k } f ( x ) d x$ ; confidence 0.941
273.
; $J ^ { k } F$ ; confidence 0.941
274.
; $L = L _ { 1 } = D _ { x _ { 1 } }$ ; confidence 0.941
275.
; $\Gamma _ { 0 } ( N )$ ; confidence 0.941
276.
; $v \mapsto Y ( v , x )$ ; confidence 0.941
277.
; $u _ { \Phi }$ ; confidence 0.941
278.
; $f _ { t , s } ( x ) = \operatorname { sup } _ { z \in H } \operatorname { inf } _ { y \in H } \left( f ( y ) + \frac { 1 } { 2 t } \| z - y \| ^ { 2 } - \frac { 1 } { 2 s } \| x - z \| ^ { 2 } \right)$ ; confidence 0.941
279.
; $O ( 1 )$ ; confidence 0.941
280.
; $p < q$ ; confidence 0.941
281.
; $\overset{\rightharpoonup}{ x }$ ; confidence 0.941
282.
; $\mathfrak { D } = \operatorname { Hom } _ { R } ( \Omega _ { k } ( R ) , R )$ ; confidence 0.941
283.
; $H ( x )$ ; confidence 0.941
284.
; $| z _ { 1 } | \geq \ldots \geq | z _ { k _ { 1 } } | > \frac { m + 2 n } { m + n } \geq$ ; confidence 0.941
285.
; $\zeta \left( \frac { 1 } { 2 } + i t \right) \ll t ^ { \beta },$ ; confidence 0.941
286.
; $a d - q ^ { - 1 } b c$ ; confidence 0.941
287.
; $\square ^ { \prime } \Gamma = \square ^ { \prime \prime } \Gamma$ ; confidence 0.941
288.
; $f ^ { * }$ ; confidence 0.941
289.
; $Z$ ; confidence 0.941
290.
; $K _ { 2 } > 0$ ; confidence 0.941
291.
; $L _ { 1 } = L _ { 2 } = : L = L ( x - y )$ ; confidence 0.941
292.
; $S : = \{ r _ { + } ( k ) , i k _ { j } , ( m _ { j } ^ { + } ) ^ { 2 } : \forall k > 0,1 \leq j \leq J \}.$ ; confidence 0.940
293.
; $| x | > R$ ; confidence 0.940
294.
; $S _ { n } = S + \alpha \lambda ^ { n }$ ; confidence 0.940
295.
; $t - h ( t ) \not\to \infty$ ; confidence 0.940
296.
; $\Lambda _ { 1 }$ ; confidence 0.940
297.
; $| \widehat { f } ( y ) | \leq B e ^ { - \pi b y ^ { 2 } }$ ; confidence 0.940
298.
; $\mathbf v ( \mathbf x , t )$ ; confidence 0.940
299.
; $\mathcal{L} \cap \mathcal{L} ^ { \perp } = \{ 0 \}$ ; confidence 0.940
300.
; $K _ { 0 } ( Q ) = K _ { 0 } ( \operatorname { rep } _ { K } ( Q ) )$ ; confidence 0.940
Maximilian Janisch/latexlist/latex/NoNroff/28. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/28&oldid=45926