User:Maximilian Janisch/latexlist/latex/NoNroff/28
List
1. ; $| d \varphi |$ ; confidence 0.948
2. ; $\sum _ { k = 1 } ^ { \infty } \frac { \zeta ( 2 k ) } { k ( 2 k + 1 ) 2 ^ { 4 k } } = \operatorname { log } ( \frac { \pi } { 2 } ) - 1 + \frac { 2 G } { \pi },$ ; confidence 0.948
3. ; $y ^ { * } = \lambda ^ { * } x ^ { * }$ ; confidence 0.948
4. ; $- 2 * \partial _ { \zeta } N ( \zeta , z )$ ; confidence 0.948
5. ; $d = 2$ ; confidence 0.948
6. ; $x ^ { - 1 } H x \subseteq G$ ; confidence 0.948
7. ; $p _ { 1 } p _ { 2 } p _ { 3 }$ ; confidence 0.948
8. ; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ ; confidence 0.948
9. ; $q ( x ) \in L _ { 1,1 } ( \mathbf{R} )$ ; confidence 0.947
10. ; $\{ X _ { n } \} \subset X$ ; confidence 0.947
11. ; $\Leftrightarrow \left[ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } \right] = 0,$ ; confidence 0.947
12. ; $| i \nabla + A ( x ) | ^ { 2 } + \sigma . B ( x ),$ ; confidence 0.947
13. ; $g = 0$ ; confidence 0.947
14. ; $M \times M$ ; confidence 0.947
15. ; $Y = \operatorname { ker } ( \pi ) \oplus \operatorname { im } ( \pi )$ ; confidence 0.947
16. ; $X = \mathcal{M} ^ { 1 } - \operatorname { lim } _ { N \rightarrow \infty } \sum _ { n = - N } ^ { n = N } c _ { n } A ^ { n },$ ; confidence 0.947
17. ; $[ x , y ] \backslash \{ x , y \}$ ; confidence 0.947
18. ; $I ( \xi , \xi ^ { \prime } )$ ; confidence 0.947
19. ; $\Delta ^ { 2 } u _ { 1 } = \Lambda _ { 1 } u _ { 1 } \text { in } \Omega$ ; confidence 0.947
20. ; $\mathcal{K} ^ { \perp }$ ; confidence 0.947
21. ; $P , Q \in A [ X ]$ ; confidence 0.947
22. ; $s \in ( 1 / 2 ) \mathbf{Z}$ ; confidence 0.947
23. ; $q _ { 1 } ( x ) = q _ { 2 } ( x )$ ; confidence 0.947
24. ; $( \partial / \partial x ) - P _ { 0 } z$ ; confidence 0.947
25. ; $\mathcal{P} _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } \left( \frac { d } { d x } \right) ^ { i }$ ; confidence 0.947
26. ; $a \neq 0$ ; confidence 0.947
27. ; $U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) },$ ; confidence 0.947
28. ; $E ( \Delta ) \mathcal{K} \subset \mathcal{D} ( A )$ ; confidence 0.947
29. ; $\| \phi - f \| _ { L^\infty } = \| H _ { \phi } \|$ ; confidence 0.947
30. ; $ \operatorname{bfgsrec} ( n - 1 , \{ s _ { k } \} , \{ y _ { k } \} , H _ { 0 } ^ { - 1 } , d )$ ; confidence 0.947
31. ; $( J ^ { t } a ) ( x , \xi ) =$ ; confidence 0.947
32. ; $G ( u ) = \int a ( \xi ) H ( M ( u , \xi ) , \xi ) d \xi.$ ; confidence 0.947
33. ; $T ( h ) = F \times [ 0,1 ] / \{ ( x , 0 ) \sim ( h ( x ) , 1 ) : x \in F \},$ ; confidence 0.947
34. ; $\omega ( z )$ ; confidence 0.947
35. ; $y _ { i } = x _ { i } + \epsilon _ { i }$ ; confidence 0.947
36. ; $W ^ { k } E _ { \Phi } ( \mathbf{R} ^ { n } )$ ; confidence 0.947
37. ; $x y$ ; confidence 0.947
38. ; $V ^ { \text{H} } V = I$ ; confidence 0.947
39. ; $V ^ { G }$ ; confidence 0.947
40. ; $\{ A _ { j } \}$ ; confidence 0.947
41. ; $p \leq q$ ; confidence 0.947
42. ; $O _ { K _ { s } [ \bar{\sigma} ] } $ ; confidence 0.947
43. ; $\beta \gamma = \gamma \beta + ( 1 - q ^ { - 2 } ) \alpha ( \delta - \alpha ) , \delta \beta = \beta \delta + ( 1 - q ^ { - 2 } ) \alpha \beta,$ ; confidence 0.947
44. ; $u _ { n } = \frac { y _ { n } } { \| s _ { n } \| _ { 2 } } \text { and } v _ { n } = \frac { s _ { n } } { \| s _ { n } \| _ { 2 } }.$ ; confidence 0.947
45. ; $\leq - \operatorname { log } ( \operatorname { max } \{ \operatorname { dist } ( z , \partial \Omega ) , \operatorname { dist } ( w , \partial \Omega ) \} ).$ ; confidence 0.947
46. ; $A u = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ( u , \varphi _ { j } ) \varphi _ { j } ( x )$ ; confidence 0.947
47. ; $Q ( f ) = \psi ( \rho _ { f } , T _ { f } ) ( M _ { f } - f )$ ; confidence 0.947
48. ; $\frac { d f } { d t _ { s } } = \kappa \partial _ { s } f + \{ H _ { s } , f \}$ ; confidence 0.947
49. ; $b ( . )$ ; confidence 0.947
50. ; $\chi _ { \lambda ^ { \prime } } \preceq \chi _ { \lambda }$ ; confidence 0.947
51. ; $b ^ { - 1 } a ^ { - 1 } b a b ^ { - 1 } a ^ { - 1 } b a b ^ { - 1 }$ ; confidence 0.947
52. ; $( \mathcal{H} , \mathcal{H} )$ ; confidence 0.946
53. ; $K _ { i } = \operatorname { lim } _ { z \rightarrow z _ { i } } \left[ ( z - z _ { i } ) \frac { h ( z ) } { g ( z ) } \right].$ ; confidence 0.946
54. ; $R _ { 1 } ^ { ( i ) } ( z ) = \frac { R _ { 0 } ^ { ( i ) } ( z ) - 1 } { z },$ ; confidence 0.946
55. ; $c _ { 1 } ( R ) = \operatorname { Dom } ( R ) \times U$ ; confidence 0.946
56. ; $\mathfrak { H } _ { + } \subset \mathfrak { H } \subset \mathfrak { H } _ { - }$ ; confidence 0.946
57. ; $( \frac { \partial } { \partial \lambda } ) ^ { n _ { 1 } + l } [ u ( z , \lambda ) ( \lambda - \lambda _ { 2 } ) ^ { n _ { 1 } } ] =$ ; confidence 0.946
58. ; $\beta \in \Sigma$ ; confidence 0.946
59. ; $f ( d ) = \sum w _ { i } d _ { i }$ ; confidence 0.946
60. ; $g _ { \mu \nu } = \left( \begin{array} { c c c c } { 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } \end{array} \right).$ ; confidence 0.946
61. ; $L ( \pi - x ) = \pi \operatorname { ln } 2 - L ( x ),$ ; confidence 0.946
62. ; $S \subset \mathbf{Z} ^ { 0 }$ ; confidence 0.946
63. ; $x \in [ 0 , L ]$ ; confidence 0.946
64. ; $( f , \phi ) ^ { \leftarrow } | _ { \sigma } : \tau \leftarrow \sigma$ ; confidence 0.946
65. ; $0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0$ ; confidence 0.946
66. ; $H _ { \overset{\rightharpoonup}{ \theta } }$ ; confidence 0.946
67. ; $E \subset S$ ; confidence 0.946
68. ; $g _ { 1 } \leq \ldots \leq g _ { k }$ ; confidence 0.946
69. ; $p _ { k } ( x ) \in C [ a , b ]$ ; confidence 0.946
70. ; $\rho ( u )$ ; confidence 0.946
71. ; $\mathbf{R} ^ { 3 }$ ; confidence 0.946
72. ; $C ( \mathcal S )$ ; confidence 0.946
73. ; $\mathbf z = \Gamma \mathbf y $ ; confidence 0.946
74. ; $\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$ ; confidence 0.946
75. ; $D ^ { \alpha } f$ ; confidence 0.946
76. ; $T _ { 2 } \in \Re ( C _ { 2 } )$ ; confidence 0.946
77. ; $\pi ( X_{*} )$ ; confidence 0.946
78. ; $= \frac { \Gamma ( \alpha + \beta ) } { \Gamma ( \alpha ) \Gamma ( \beta ) } \int _ { 0 } ^ { 1 } \tau ( x + ( y - x ) t ) t ^ { \beta - 1 } ( 1 - t ) ^ { \alpha - 1 } d t +$ ; confidence 0.946
79. ; $i = 1,2$ ; confidence 0.946
80. ; $\Delta = \pi ^ { k ^ { * } } ( \Delta )$ ; confidence 0.946
81. ; $[ f , g ] = \int _ { - \infty } ^ { - \infty } f \bar{g} d \sigma$ ; confidence 0.946
82. ; $\operatorname{NP} = \operatorname{SO} ( \exists )$ ; confidence 0.946
83. ; $H = ( \kappa _ { 1 } + \kappa _ { 2 } ) / 2$ ; confidence 0.946
84. ; $| \mu ( E ) | < \varepsilon$ ; confidence 0.946
85. ; $u \in H ^ { \infty }$ ; confidence 0.946
86. ; $\operatorname{GL} ^ { 2 } ( n ) \rightarrow \operatorname{GL} ^ { 1 } ( n )$ ; confidence 0.946
87. ; $f ( C )$ ; confidence 0.946
88. ; $H ( r , 0 ) = \sum _ { n = 0 } ^ { \infty } a _ { n } H _ { n } ( r , 0 )$ ; confidence 0.946
89. ; $( X , \mathbf{R} )$ ; confidence 0.946
90. ; $Y _ { \operatorname{id} } = \Sigma \times S ^ { 1 }$ ; confidence 0.946
91. ; $\Pi ( a ) = \operatorname { exp } \left( - \int _ { 0 } ^ { a } \mu ( \sigma ) d \sigma \right)$ ; confidence 0.946
92. ; $K = 1$ ; confidence 0.946
93. ; $d _ { 1 } = \frac { \operatorname { log } ( S ( t ) / K ) + ( r + \sigma ^ { 2 } / 2 ) ( T - t ) } { \sigma \sqrt { T - t } },$ ; confidence 0.946
94. ; $Z ^ { 7 / 3 }$ ; confidence 0.946
95. ; $\Delta g = g \otimes g$ ; confidence 0.946
96. ; $p ^ { k }$ ; confidence 0.945
97. ; $R = \mathbf{Z}$ ; confidence 0.945
98. ; $( x , \varepsilon ) \in \mathbf{R} ^ { n } \times ( 0 , \infty )$ ; confidence 0.945
99. ; $= \left( 4 q ^ { 2 t } \frac { q ^ { 2 t } - 1 } { q ^ { 2 } - 1 } , q ^ { 2 t - 1 } \left[ \frac { 2 ( q ^ { 2 t } - 1 ) } { q + 1 } + 1 \right] , q ^ { 2 t - 1 } ( q - 1 ) \frac { q ^ { 2 t - 1 } + 1 } { q + 1 } , q ^ { 4 t - 2 } \right),$ ; confidence 0.945
100. ; $S : B \rightarrow B$ ; confidence 0.945
101. ; $\overline { f } ( [ g ] ) : X \rightarrow P$ ; confidence 0.945
102. ; $V ( \mathfrak{a} , \mathfrak{p} )$ ; confidence 0.945
103. ; $\operatorname{SH} ^ { * } ( M , \omega , \phi )$ ; confidence 0.945
104. ; $\varphi ( u ) = u ^ { p }$ ; confidence 0.945
105. ; $a + b$ ; confidence 0.945
106. ; $a ^ { 2_0 } \neq 0$ ; confidence 0.945
107. ; $m ( \Xi ) = 1$ ; confidence 0.945
108. ; $\beta > 9 / 56 = 0.1607 \dots$ ; confidence 0.945
109. ; $i \neq 1 , \operatorname { dim } A$ ; confidence 0.945
110. ; $L _ { 2 } ( G )$ ; confidence 0.945
111. ; $s _ { i +j-1 } $ ; confidence 0.945
112. ; $( n - r ) ^ { - 1 } \mathbf{M} _ { \mathsf{E} }$ ; confidence 0.945
113. ; $\Psi \circ f = F _ { K } \circ \Phi$ ; confidence 0.945
114. ; $ \eta $ ; confidence 0.945
115. ; $F _ { m }$ ; confidence 0.945
116. ; $F ^ { 4 } \in \mathcal{N} \mathcal{P}$ ; confidence 0.945
117. ; $( u , v ) _ { + } = ( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } v ) _ { 0 }$ ; confidence 0.945
118. ; $K _ { i } = \frac { 1 } { ( r - 1 ) ! } \operatorname { lim } _ { z \rightarrow z _ { i } } \frac { d ^ { n } } { d z ^ { r- 1 } } \left[ ( z - z _ { i } ) ^ { r } \frac { h ( z ) } { g ( z ) } \right] .$ ; confidence 0.945
119. ; $f : H \rightarrow \mathbf{R} \cup \{ \infty \}$ ; confidence 0.945
120. ; $\sigma ^ { 0 } ( p ^ { \alpha } ) = \sigma ( p ^ { \alpha } )$ ; confidence 0.945
121. ; $|.|$ ; confidence 0.945
122. ; $\sigma ^ { 2 k * } \mathcal{E} ( L ) = 0$ ; confidence 0.945
123. ; $f_{( r )} ( x _ { 0 } ) = f ^ { ( r ) } ( x _ { 0 } )$ ; confidence 0.945
124. ; $| S ( z ) | \leq 1$ ; confidence 0.945
125. ; $\operatorname { Int } ( g ) : G \rightarrow G$ ; confidence 0.945
126. ; $M ( r _ { 1 } , r _ { 2 } ) > \left( \frac { \pi } { 4 } \right) ^ { 2 r _ { 2 } } \left( \frac { n ^ { n } } { n ! } \right) ^ { 2 },$ ; confidence 0.945
127. ; $H \in \mathcal{X}$ ; confidence 0.945
128. ; $\forall \alpha ^ { \prime } , \alpha \in S ^ { 2 }$ ; confidence 0.945
129. ; $h ( \theta ) = \mathsf{E} _ { \theta } [ H ( \theta , X ) ]$ ; confidence 0.945
130. ; $[ q ]$ ; confidence 0.945
131. ; $g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { s } - \frac { m - x } { s ^ { 2 } } } & { \text { if } m - s \leq x \leq m, } \\ { \frac { 1 } { s } - \frac { x - m } { s ^ { 2 } } } & { \text { if } m \leq x \leq m + s. } \end{array} \right.$ ; confidence 0.945
132. ; $S A ( t ) S ^ { - 1 } = A ( t ) + B ( t )$ ; confidence 0.945
133. ; $A _ { \operatorname{dR} } ( X )$ ; confidence 0.945
134. ; $U ( a , R )$ ; confidence 0.945
135. ; $L ( s , \chi_{- 3} )$ ; confidence 0.945
136. ; $\bar{X} _ { n } = 1 / n ( X _ { 1 } + \ldots + X _ { n } )$ ; confidence 0.945
137. ; $= \prod _ { m = 2 } ^ { \infty } ( 1 - m ^ { - z } ) ^ { - P ( m ) }.$ ; confidence 0.945
138. ; $F / \mathbf Q $ ; confidence 0.945
139. ; $k \rightarrow \infty,$ ; confidence 0.945
140. ; $f \in \Gamma ( L ^ { 2 } ( \mathbf{R} ) )$ ; confidence 0.944
141. ; $p ^ { m } - 1$ ; confidence 0.944
142. ; $d = n - m > 0$ ; confidence 0.944
143. ; $M _ { \varphi }$ ; confidence 0.944
144. ; $( \varphi _ { n } ) _ { n = 0 } ^ { \infty }$ ; confidence 0.944
145. ; $d < n$ ; confidence 0.944
146. ; $\rho ( X _ { 1 } )$ ; confidence 0.944
147. ; $d ^ { n } : C ^ { n } ( \mathcal{C} , M ) \rightarrow C ^ { n + 1 } ( \mathcal{C} , M )$ ; confidence 0.944
148. ; $g = \frac { ( n - 1 ) ( n - 2 ) } { 2 } -\#\text{double points},$ ; confidence 0.944
149. ; $d \Omega = \varphi \psi _ { x } d x + \psi \varphi_y d y.$ ; confidence 0.944
150. ; $\{ a , b , c , d \}$ ; confidence 0.944
151. ; $\epsilon _ { 1 } = \ldots \epsilon _ { p } = 1$ ; confidence 0.944
152. ; $P _ { L } ( \square )$ ; confidence 0.944
153. ; $[ - g , g ]$ ; confidence 0.944
154. ; $\widehat { f } ( \alpha , p ) : = R f$ ; confidence 0.944
155. ; $\mathbf{R} ^ { k }$ ; confidence 0.944
156. ; $\frac { \partial v } { \partial t } - 6 v ^ { 2 } \frac { \partial v } { \partial x } + \frac { \partial ^ { 3 } v } { \partial x ^ { 3 } } = 0$ ; confidence 0.944
157. ; $\mathcal{S} ( \mathbf{R} ^ { n } ) \times \mathcal{S} ( \mathbf{R} ^ { n } )$ ; confidence 0.944
158. ; $X_j$ ; confidence 0.944
159. ; $q - 1$ ; confidence 0.944
160. ; $y = - x + ( x ^ { 3 } / 3 ) + ( \dot { x } / \mu )$ ; confidence 0.944
161. ; $\operatorname{BS} ( 1 , n )$ ; confidence 0.944
162. ; $y = r \operatorname { sin } \theta \operatorname { sin } \phi$ ; confidence 0.944
163. ; $e _ { j } ^ { n _ { i j } } \in \mathcal{E} _ { A , K [ \lambda ] }$ ; confidence 0.944
164. ; $G ( K )$ ; confidence 0.944
165. ; $\operatorname{BS} ( 1 , m )$ ; confidence 0.944
166. ; $\alpha / \beta$ ; confidence 0.944
167. ; $K ( a , b )$ ; confidence 0.944
168. ; $\mathcal{A} _ { b } ( B _ { E } ) \equiv$ ; confidence 0.944
169. ; $k = n + 1$ ; confidence 0.944
170. ; $= \int_{T} \int _ { T } d m ( t ) d m ( s ) F ( t ) \overline { G ( s ) } ( h ( s , x ) , h ( t , x ) ) _ { H } =$ ; confidence 0.944
171. ; $x , y \in E$ ; confidence 0.944
172. ; $N _ { V }$ ; confidence 0.944
173. ; $\mathbf{a} \in \mathbf{R} ^ { n } \backslash \{ 0 \}$ ; confidence 0.944
174. ; $\mathbf{F} _ { q } [ T ]$ ; confidence 0.943
175. ; $W E$ ; confidence 0.943
176. ; $( f ( x ) , K ( x , y ) ) = \left( \sum _ { j = 1 } ^ { J } K ( x , y _ { j } ) c _ { j } , K ( x , y ) \right) =$ ; confidence 0.943
177. ; $\mathcal{L} =$ ; confidence 0.943
178. ; $B _ { 2 } ( G )$ ; confidence 0.943
179. ; $\theta ( . , \lambda )$ ; confidence 0.943
180. ; $u , v \in A$ ; confidence 0.943
181. ; $u ( 0 ) = u _ { 0 } \in D ( \mathcal{A} ) , f \in C ( [ 0 , T ] ; D ( A ) ).$ ; confidence 0.943
182. ; $G / C _ { G } ( \langle x \rangle ^ { G } )$ ; confidence 0.943
183. ; $H ( A ^ { c } )$ ; confidence 0.943
184. ; $E _ { m + 1} $ ; confidence 0.943
185. ; $a ( \xi ) = \xi$ ; confidence 0.943
186. ; $2 g - 2 = \nu _ { i } ( 2 g _ { i } - 2 ) + \mathfrak { D } _ { i },$ ; confidence 0.943
187. ; $0 < a < 1$ ; confidence 0.943
188. ; $x ^ { \pm } \in L _ { 0 } \cap L _ { 1 }$ ; confidence 0.943
189. ; $L ^ { m } + Q$ ; confidence 0.943
190. ; $( f _ { 1 } ( x ) - f _ { 1 } ( y ) ) . ( f _ { 2 } ( x ) - f _ { 2 } ( y ) ) \geq 0$ ; confidence 0.943
191. ; $+ z ^ { \lambda } \sum _ { j = 1 } ^ { \infty } z ^ { j } \left[ c _ { j } ( \lambda ) \pi ( \lambda + j ) + \sum _ { k = 0 } ^ { j - 1 } c _ { k } ( \lambda ) p _ { j - k } ( \lambda + k ) \right].$ ; confidence 0.943
192. ; $\omega = \pi / 6$ ; confidence 0.943
193. ; $T _ { p q }$ ; confidence 0.943
194. ; $- F _ { n + 1 } ( X , q _ { i } + \sigma \eta , p _ { n + 1 } ) ),$ ; confidence 0.943
195. ; $\operatorname{Aut}( G )$ ; confidence 0.943
196. ; $\mu ( \square ^ { g } m ) = g \mu ( m ) g ^ { - 1 } , \square ^ { \mu ( m ) } m ^ { \prime } = m m ^ { \prime } m ^ { - 1 },$ ; confidence 0.943
197. ; $= 2 \operatorname { cos } ( n \alpha ) = 2 T _ { n } ( \operatorname { cos } \alpha ) = 2 T _ { n } \left( \frac { x } { 2 } \right).$ ; confidence 0.943
198. ; $X = \mathbf{R} ^ { 2 }$ ; confidence 0.943
199. ; $N _ { f } = 0$ ; confidence 0.943
200. ; $J = 60 G _ { 4 } ^ { 3 } / \Delta$ ; confidence 0.943
201. ; $m | \neq | n$ ; confidence 0.943
202. ; $K \geq $ ; confidence 0.943
203. ; $h ( G )$ ; confidence 0.943
204. ; $i \neq - j$ ; confidence 0.943
205. ; $L ^ { + } = D ^ { + } - A ^ { \prime }$ ; confidence 0.943
206. ; $P ( x )$ ; confidence 0.943
207. ; $S \subset G$ ; confidence 0.943
208. ; $( T f _ { n } ) _ { n = 1 } ^ { \infty } \subset M$ ; confidence 0.943
209. ; $0 \in \sigma _ { \text{T} } ( A , \mathcal{H} )$ ; confidence 0.943
210. ; $\kappa _ { p } ( f ) = K _ { p } ( \operatorname { Re } ( f ) ) + i K _ { p } ( \operatorname { Im } ( f ) )$ ; confidence 0.943
211. ; $\text{l} \cup \{ \infty \}$ ; confidence 0.942
212. ; $\{ C _ { i } \}$ ; confidence 0.942
213. ; $X ^ { ( r ) }$ ; confidence 0.942
214. ; $\otimes : L \times L \rightarrow L$ ; confidence 0.942
215. ; $A = \times _ { i \in I } A$ ; confidence 0.942
216. ; $\Phi ^ { ( j ) } = O ( | Z | )$ ; confidence 0.942
217. ; $\widehat { \theta }_n$ ; confidence 0.942
218. ; $X_r$ ; confidence 0.942
219. ; $\operatorname{BS} ( 1,2 )$ ; confidence 0.942
220. ; $T _ { y } Y$ ; confidence 0.942
221. ; $\zeta _ { 1 } = \ldots = \zeta _ { q } = 0$ ; confidence 0.942
222. ; $F : \mathcal{M} f \rightarrow \mathcal{M} f$ ; confidence 0.942
223. ; $V \times V$ ; confidence 0.942
224. ; $\operatorname{GF} _ { 4 }$ ; confidence 0.942
225. ; $\alpha : y \rightarrow x$ ; confidence 0.942
226. ; $B ( x )$ ; confidence 0.942
227. ; $\partial \phi$ ; confidence 0.942
228. ; $( a , b )$ ; confidence 0.942
229. ; $\lambda ( x , y ) = \operatorname { sup } \{ \lambda : y \geq \lambda x \}.$ ; confidence 0.942
230. ; $= 6 \int _ { 0 } ^ { 1 } C _ { X , Y } ( u , u ) d u - 2.$ ; confidence 0.942
231. ; $S ^ { 2 }$ ; confidence 0.942
232. ; $\mathcal{S} _ { n } = s _ { n } + \theta ^ { 2 } F _ { n }$ ; confidence 0.942
233. ; $C ( K )$ ; confidence 0.942
234. ; $\Lambda ( M , s ) = \varepsilon ( M , s ) \Lambda ( M ^ { \vee } , 1 - s )$ ; confidence 0.942
235. ; $g a = b$ ; confidence 0.942
236. ; $A v = \lambda M v$ ; confidence 0.942
237. ; $| y ^ { \prime } - y | \leq | x - y | / 2$ ; confidence 0.942
238. ; $g \mapsto a _ { n } ( g )$ ; confidence 0.942
239. ; $\nabla g = 0 \in \otimes ^ { 3 } \mathcal{E}$ ; confidence 0.942
240. ; $M ( \mathcal{E} ) = L ( \mathcal{E} ) ^ { * }$ ; confidence 0.942
241. ; $\varphi ( a , 0,1 ) = 0 , \varphi ( a , 0,2 ) = 1,$ ; confidence 0.942
242. ; $\Psi _ { 1 } ( z ) = e ^ { \sum _ { 1 } ^ { \infty } x _ { i } z ^ { i } } S _ { 1 } \chi ( z ) =$ ; confidence 0.942
243. ; $( h _ { j } ) ^ { * } ( M _ { i j } ^ { \beta } ) = ( h _ { i } ^ { - 1 } M _ { i j } ^ { \beta } h _ { j } )$ ; confidence 0.942
244. ; $\mu ^ { ( t + 1 ) } = \frac { \sum _ { i } w _ { i } ^ { ( t + 1 ) } y _ { i } } { \sum _ { i } w _ { i } ^ { ( t + 1 ) } },$ ; confidence 0.942
245. ; $L \in \mathcal{N} \mathcal{P}$ ; confidence 0.942
246. ; $K ( x ) \approx L ( x ) = \{ x \approx T \}$ ; confidence 0.942
247. ; $K ( \Gamma ) \approx L ( \Gamma ) = \{ \kappa _ { j } ( \psi ) \approx \lambda _ { j } ( \psi ) : \psi \in \Gamma , j \in J \}$ ; confidence 0.942
248. ; $M _ { 0 } \times S ^ { 1 } \approx M _ { 1 } \times S ^ { 1 }$ ; confidence 0.942
249. ; $\beta ( t )$ ; confidence 0.942
250. ; $\Psi ^ { - 1 }$ ; confidence 0.942
251. ; $( f ^ { * } g ) ( x ) = \int _ { 1 } ^ { \infty } \int _ { 1 } ^ { \infty } S ( x , y , t ) f ( t ) g ( y ) d t d y,$ ; confidence 0.942
252. ; $x = r \operatorname { sin } \theta \operatorname { cos } \phi$ ; confidence 0.941
253. ; $z b = x b $ ; confidence 0.941
254. ; $X \times _ { G } E G \rightarrow B G,$ ; confidence 0.941
255. ; $\Gamma \backslash X$ ; confidence 0.941
256. ; $S ( g u ^ { k } ) = g S ( u ^ { k } ) , \quad g \in \operatorname{GL} ^ { k } ( n ) , \quad u ^ { k } \in M _ { k }.$ ; confidence 0.941
257. ; $ \mathbf{G} = ( \mathbf{V} , \mathbf{E} )$ ; confidence 0.941
258. ; $\sum _ { k = 0 } ^ { \infty } c _ { k } z ^ { k }$ ; confidence 0.941
259. ; $\{ \alpha _ { n } \} \subseteq \{ n \}$ ; confidence 0.941
260. ; $\frac { I - \Theta _ { \Delta } ( z ) \Theta _ { \Delta } ( w ) ^ { * } } { 1 - z \overline { w } } = G ( I - z T ) ^ { - 1 } ( I - \overline { w } T ^ { * } ) ^ { - 1 } G ^ { * }.$ ; confidence 0.941
261. ; $F ( t , 1 - t ) = \| t x + ( 1 - t ) y \| \leq 1$ ; confidence 0.941
262. ; $P \subset [ a , b ]$ ; confidence 0.941
263. ; $( \frac { \partial } { \partial \lambda } ) ^ { m _ { j } + l } \left[ u ( z , \lambda ) ( \lambda - \lambda _ { j } ) ^ { m _ { j } } \right] =$ ; confidence 0.941
264. ; $L ^ { 2 } ( \mathbf{R} ^ { 2 n } )$ ; confidence 0.941
265. ; $x _ { i } = x _ { j } x _ { k } x _ { j } ^ { - 1 }$ ; confidence 0.941
266. ; $L _ { \Omega } ( f )$ ; confidence 0.941
267. ; $C = \mathbf{Z} ( Q )$ ; confidence 0.941
268. ; $n^{\prime 0 }$ ; confidence 0.941
269. ; $R ( G )$ ; confidence 0.941
270. ; $S ^ { k } \times D ^ { m - k }$ ; confidence 0.941
271. ; $P ( t , x ; D _ { t } , D _ { x } ) u =$ ; confidence 0.941
272. ; $\alpha _ { k } = \int _ { - \infty } ^ { \infty } x ^ { k } f ( x ) d x$ ; confidence 0.941
273. ; $J ^ { k } F$ ; confidence 0.941
274. ; $L = L _ { 1 } = D _ { x _ { 1 } }$ ; confidence 0.941
275. ; $\Gamma _ { 0 } ( N )$ ; confidence 0.941
276. ; $v \mapsto Y ( v , x )$ ; confidence 0.941
277. ; $u _ { \Phi }$ ; confidence 0.941
278. ; $f _ { t , s } ( x ) = \operatorname { sup } _ { z \in H } \operatorname { inf } _ { y \in H } \left( f ( y ) + \frac { 1 } { 2 t } \| z - y \| ^ { 2 } - \frac { 1 } { 2 s } \| x - z \| ^ { 2 } \right)$ ; confidence 0.941
279. ; $O ( 1 )$ ; confidence 0.941
280. ; $p < q$ ; confidence 0.941
281. ; $\overset{\rightharpoonup}{ x }$ ; confidence 0.941
282. ; $\mathfrak { D } = \operatorname { Hom } _ { R } ( \Omega _ { k } ( R ) , R )$ ; confidence 0.941
283. ; $H ( x )$ ; confidence 0.941
284. ; $| z _ { 1 } | \geq \ldots \geq | z _ { k _ { 1 } } | > \frac { m + 2 n } { m + n } \geq$ ; confidence 0.941
285. ; $\zeta \left( \frac { 1 } { 2 } + i t \right) \ll t ^ { \beta },$ ; confidence 0.941
286. ; $a d - q ^ { - 1 } b c$ ; confidence 0.941
287. ; $\square ^ { \prime } \Gamma = \square ^ { \prime \prime } \Gamma$ ; confidence 0.941
288. ; $f ^ { * }$ ; confidence 0.941
289. ; $Z$ ; confidence 0.941
290. ; $K _ { 2 } > 0$ ; confidence 0.941
291. ; $L _ { 1 } = L _ { 2 } = : L = L ( x - y )$ ; confidence 0.941
292. ; $S : = \{ r _ { + } ( k ) , i k _ { j } , ( m _ { j } ^ { + } ) ^ { 2 } : \forall k > 0,1 \leq j \leq J \}.$ ; confidence 0.940
293. ; $| x | > R$ ; confidence 0.940
294. ; $S _ { n } = S + \alpha \lambda ^ { n }$ ; confidence 0.940
295. ; $t - h ( t ) \not\to \infty$ ; confidence 0.940
296. ; $\Lambda _ { 1 }$ ; confidence 0.940
297. ; $| \widehat { f } ( y ) | \leq B e ^ { - \pi b y ^ { 2 } }$ ; confidence 0.940
298. ; $\mathbf v ( \mathbf x , t )$ ; confidence 0.940
299. ; $\mathcal{L} \cap \mathcal{L} ^ { \perp } = \{ 0 \}$ ; confidence 0.940
300. ; $K _ { 0 } ( Q ) = K _ { 0 } ( \operatorname { rep } _ { K } ( Q ) )$ ; confidence 0.940
Maximilian Janisch/latexlist/latex/NoNroff/28. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/28&oldid=45926