Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/NoNroff/23

From Encyclopedia of Mathematics
Jump to: navigation, search

List

1. b11002050.png ; $u \neq 0$ ; confidence 0.974

2. c13019045.png ; $\varphi ( t , x ) = e ^ { t A } x$ ; confidence 0.974

3. s12034068.png ; $S ^ { 1 } = \mathbf{R} / \mathbf{Z}$ ; confidence 0.974

4. c13007013.png ; $X = t ^ { 2 }$ ; confidence 0.974

5. e120070143.png ; $H ^ { 0 }$ ; confidence 0.974

6. g13003044.png ; $j \geq j_0 \}$ ; confidence 0.974

7. a01095068.png ; $x ^ { i } = x ^ { i } ( t )$ ; confidence 0.974

8. c1300905.png ; $( N + 1 )$ ; confidence 0.974

9. h12012034.png ; $\Phi = \overline { \phi } d \overline { \phi }$ ; confidence 0.974

10. b110220161.png ; $\operatorname { det } ( r _ { \mathcal{D} } )$ ; confidence 0.974

11. l058430142.png ; $E _ { 8 } ^ { ( 1 ) }$ ; confidence 0.974

12. p12015019.png ; $\chi _ { K }$ ; confidence 0.974

13. b13001043.png ; $V _ { i } = F _ { i } / \Gamma _ { i }$ ; confidence 0.974

14. a13025023.png ; $D _ { i } \in \mathcal{D}$ ; confidence 0.974

15. g1200107.png ; $( G _ { b } ^ { \alpha } f ) ( \omega ) = \int _ { - \infty } ^ { \infty } \left[ e ^ { - i \omega t } f ( t ) \right] g _ { \alpha } ( t - b ) d t,$ ; confidence 0.974

16. e03500062.png ; $B ( x _ { i } , \epsilon ) \subset C$ ; confidence 0.974

17. z13003054.png ; $( Z h ) ( t , w ) = \int _ { 0 } ^ { 1 } ( Z R ) ( t - s , w ) ( Z f ) ( s , w ) d s.$ ; confidence 0.974

18. c13015075.png ; $u \in \mathcal{G} ^ { \infty } ( \Omega )$ ; confidence 0.974

19. e12023067.png ; $\mathcal{E} ( L ) ( \sigma ^ { 2 } ( x ) ) = 0,$ ; confidence 0.974

20. h04694056.png ; $A / I$ ; confidence 0.974

21. f12005025.png ; $X ^ { p } - X - a$ ; confidence 0.974

22. c12017039.png ; $H ( k ) \equiv ( \beta _ { i + j } ) _ { 0 \leq i , j \leq k }$ ; confidence 0.974

23. c02688030.png ; $s \geq 2$ ; confidence 0.974

24. i12006063.png ; $ \operatorname{Idim}( P ) \leq k$ ; confidence 0.974

25. v0969109.png ; $\operatorname { lim } _ { T \rightarrow \infty } \frac { 1 } { T } \int _ { 0 } ^ { T } U _ { t } h d t = \bar{h}$ ; confidence 0.974

26. a12016090.png ; $\operatorname{USDF} = \alpha + \beta \operatorname{UNOFF} + \epsilon$ ; confidence 0.974

27. t1202006.png ; $M _ { 2 } ( k ) = \operatorname { max } _ { j } | z _ { j } | ^ { k }$ ; confidence 0.974

28. j12001057.png ; $F : \mathbf{C} ^ { n } \rightarrow \mathbf{C} ^ { n }$ ; confidence 0.974

29. o13001046.png ; $\mathcal{F} ^ { * } = \mathcal{F} ^ { - 1 }$ ; confidence 0.974

30. p13007024.png ; $M f = \operatorname { det } \left( \frac { \partial ^ { 2 } f } { \partial z _ { i } \partial \overline{z}_ { j } } \right) .$ ; confidence 0.974

31. l1200306.png ; $H ^ { * } ( X , \mathbf{F} _ { p } ) = R ^ { * }$ ; confidence 0.974

32. s12033026.png ; $( 4 u ^ { 2 } , 2 u ^ { 2 } - u , u ^ { 2 } - u )$ ; confidence 0.974

33. e12006058.png ; $J ^ { 1 } \Gamma : J ^ { 1 } Y \rightarrow J ^ { 1 } ( J ^ { 1 } Y \rightarrow M )$ ; confidence 0.974

34. f12009071.png ; $H _ { K }$ ; confidence 0.973

35. b1203206.png ; $x , y , u , v \in L ^ { P } ( \mu )$ ; confidence 0.973

36. b12003026.png ; $( a b ) ^ { - 1 } > 1$ ; confidence 0.973

37. w120110125.png ; $\mathbf{R} ^ { 2 n } \times \mathbf{R} ^ { 2 n }$ ; confidence 0.973

38. i12005041.png ; $\theta \in \Theta _ { 1 } \subset \Theta - \Theta _ { 0 }$ ; confidence 0.973

39. l11002061.png ; $x ^ { + } = x \vee e$ ; confidence 0.973

40. i13003096.png ; $D _ { + } + D _ { + } ^ { * }$ ; confidence 0.973

41. j12001075.png ; $\dot { y } ( t ) = F ( y ( t ) )$ ; confidence 0.973

42. a130310123.png ; $T ^ { \prime } \leq o ( T )$ ; confidence 0.973

43. r130080126.png ; $B ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { - 1 } \varphi _ { j } ( x ) \overline { \varphi _ { j } ( y ) }$ ; confidence 0.973

44. n067520254.png ; $d_j = 0$ ; confidence 0.973

45. m13022054.png ; $Z ( g,h ; z )$ ; confidence 0.973

46. z12002027.png ; $F _ { 2 } + \ldots + F _ { 2 k } = F _ { 2 k + 1 } - 1.$ ; confidence 0.973

47. d0338501.png ; $x ^ { j }$ ; confidence 0.973

48. v120020113.png ; $( x _ { 0 } , y _ { 0 } ) \in \Gamma ( F )$ ; confidence 0.973

49. d032450242.png ; $U _ { y }$ ; confidence 0.973

50. b13007033.png ; $b = 1$ ; confidence 0.973

51. l05702060.png ; $H ^ { i } ( \bar{X} , F ) = H ^ { i } ( X , F )$ ; confidence 0.973

52. i13008034.png ; $X \mapsto X ^ { \prime }$ ; confidence 0.973

53. f12004037.png ; $\odot=\max$ ; confidence 0.973

54. c13008030.png ; $n = [ L : K ]$ ; confidence 0.973

55. z13008018.png ; $r ^ { 2 } = z \bar{z}$ ; confidence 0.973

56. f12002034.png ; $R = P / Q$ ; confidence 0.973

57. i12008014.png ; $S _ { i } = 1$ ; confidence 0.973

58. e12015046.png ; $g ^ { i } ( \bar{x} , \dot { \bar{x} } , t )$ ; confidence 0.973

59. w12003010.png ; $L _ { 2 } ( \mu )$ ; confidence 0.973

60. s120230113.png ; $\phi ( \lambda ( T T ^ { \prime } ) )$ ; confidence 0.973

61. c1202506.png ; $C = \frac { \operatorname { det } \mu } { \operatorname { trace } ^ { 2 } \mu } \text { or } C ^ { \prime } = \frac { \operatorname { det } \mu } { \operatorname { trace } \mu }.$ ; confidence 0.973

62. w13013032.png ; $R > r$ ; confidence 0.973

63. s13045037.png ; $x _ { 1 } < x _ { 2 }$ ; confidence 0.973

64. a130040117.png ; $\varphi \equiv \psi ( \operatorname { mod } \Lambda _ { \mathcal{D} } T )$ ; confidence 0.973

65. g13001079.png ; $\omega ^ { c } = \gamma$ ; confidence 0.973

66. f1200503.png ; $\mathbf{F} ( T )$ ; confidence 0.973

67. s130620221.png ; $\mu _ { \text{ac} } ( A ) > 0$ ; confidence 0.973

68. b01675060.png ; $q \rightarrow 0$ ; confidence 0.973

69. m12007030.png ; $m ( P )$ ; confidence 0.973

70. s13002037.png ; $u \in U M$ ; confidence 0.973

71. f120150113.png ; $k > \operatorname { max } ( i ( F ) , 0 )$ ; confidence 0.973

72. b13027014.png ; $S ^ { * } S = 1$ ; confidence 0.973

73. s13001012.png ; $R _ { S } ^ { * }$ ; confidence 0.973

74. q13005092.png ; $| z _ { 1 } - z _ { 2 } | = | z _ { 2 } - z _ { 3 } | \Rightarrow \frac { | h ( z _ { 1 } ) - h ( z _ { 2 } ) | } { | h ( z _ { 2 } ) - h ( z _ { 3 } ) | } \leq M.$ ; confidence 0.973

75. s13064068.png ; $s \in L ^ { 1 } ( \mathbf{R} ) \cap L ^ { \infty } ( \mathbf{R} )$ ; confidence 0.973

76. d03029018.png ; $\{ s _ { k } ( x ) \} _ { 0 } ^ { n }$ ; confidence 0.973

77. i130090205.png ; $g _ { \chi } ^ { * } ( T )$ ; confidence 0.973

78. c12008050.png ; $\lambda \in \mathbf{C}$ ; confidence 0.973

79. w12006069.png ; $T _ { B } \circ T _ { A } = T _ { A } \circ T _ { B }$ ; confidence 0.973

80. w13004050.png ; $\eta ( W ) d g ( W ) \in i \mathbf{R}$ ; confidence 0.973

81. n13006037.png ; $\mu _ { k + 1 } \approx \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } },$ ; confidence 0.973

82. a13013074.png ; $\tau_l$ ; confidence 0.973

83. e13006023.png ; $z \in Z$ ; confidence 0.973

84. j120020240.png ; $B M O$ ; confidence 0.973

85. g13006048.png ; $| x _ { i } | > 0$ ; confidence 0.973

86. q07632050.png ; $\mathcal{A} ^ { \prime }$ ; confidence 0.973

87. z130110111.png ; $m p ( z )$ ; confidence 0.973

88. a13032029.png ; $S_n \operatorname { log } ( q / p )$ ; confidence 0.973

89. d12026023.png ; $S _ { n } = \sum _ { k = 1 } ^ { n } \xi _ { n k }$ ; confidence 0.973

90. k055840283.png ; $[ N x , x ] \geq 0$ ; confidence 0.973

91. r13008054.png ; $| w | \leq \rho _ { D }$ ; confidence 0.973

92. c02105068.png ; $N + 1$ ; confidence 0.973

93. e12018018.png ; $\operatorname { sign } ( M ) = \int _ { M } \mathcal{L} ( M , g ) - \eta _ { D } ( 0 ),$ ; confidence 0.973

94. a12023026.png ; $f | _ { \Gamma }$ ; confidence 0.973

95. b1202203.png ; $( x , v ) \in \mathbf{R} ^ { N } \times \mathbf{R} ^ { N }$ ; confidence 0.973

96. m12012027.png ; $A q \subseteq R$ ; confidence 0.973

97. b12031016.png ; $\operatorname { lim } _ { R \rightarrow \infty } M _ { R } ^ { \delta } f ( x ) = f ( x )$ ; confidence 0.973

98. p13014041.png ; $f \pm ( x _ { 0 } )$ ; confidence 0.973

99. s13041043.png ; $( P _ { n } )$ ; confidence 0.973

100. a11079035.png ; $\mathcal{M} _ { 1 }$ ; confidence 0.973

101. f12019017.png ; $N \cap H = \{ 1 \}$ ; confidence 0.973

102. a13023063.png ; $U = C ( S )$ ; confidence 0.973

103. d1203204.png ; $T : X \rightarrow L ^ { 1 }$ ; confidence 0.973

104. d12029043.png ; $q \leq N$ ; confidence 0.973

105. m130230144.png ; $\phi : X _ { n } \rightarrow Y$ ; confidence 0.973

106. h047860125.png ; $S ( X )$ ; confidence 0.973

107. e1201904.png ; $\sigma : X \times X \rightarrow F$ ; confidence 0.973

108. l12003089.png ; $T _ { E , \tau } R ^ { * }$ ; confidence 0.973

109. i13006014.png ; $\delta ( - k ) = - \delta ( k ) , k \in \mathbf{R} , \quad \delta ( \infty ) = 0.$ ; confidence 0.973

110. s120320111.png ; $\operatorname { Ber } ( T ) = \operatorname { det } ( P - Q S ^ { - 1 } R ) \operatorname { det } ( S ) ^ { - 1 }.$ ; confidence 0.973

111. p130100180.png ; $f ^ { - 1 } ( K ) \cap T$ ; confidence 0.973

112. a01121087.png ; $q ( z )$ ; confidence 0.973

113. b12031018.png ; $\| M _ { R } ^ { \delta } f - f \| _ { p } \rightarrow 0$ ; confidence 0.973

114. b130010118.png ; $ \operatorname{SU} ( n , 1 )$ ; confidence 0.973

115. s130620119.png ; $( 1 / \pi ) \operatorname { Im } m_+ ( \lambda )$ ; confidence 0.973

116. t12015026.png ; $S = J \Delta ^ { 1 / 2 }$ ; confidence 0.973

117. d12003080.png ; $* 1$ ; confidence 0.973

118. e120010120.png ; $\mathcal{M} = ( m _ { i } : A \rightarrow A _ { i } ) _ { I }$ ; confidence 0.973

119. l12010045.png ; $L _ { 1 / 2,1 } = 1 / 2$ ; confidence 0.972

120. i12001020.png ; $\operatorname { sup } _ { x \neq y \in \Omega } | u ( x ) - u ( y ) | ( \sigma | x - y | ) ^ { - 1 } < \infty$ ; confidence 0.972

121. b01521045.png ; $a b$ ; confidence 0.972

122. r13014016.png ; $N ( \lambda )$ ; confidence 0.972

123. a1300807.png ; $g ( x ) = h ( x ) / \alpha$ ; confidence 0.972

124. b13006023.png ; $\| A \| _ { 1 }$ ; confidence 0.972

125. n12010034.png ; $\nu > 0$ ; confidence 0.972

126. v1100509.png ; $f _ { Q }$ ; confidence 0.972

127. f13010070.png ; $g \in \mathbf{C} ^ { G }$ ; confidence 0.972

128. l110020129.png ; $M ^ { \perp \perp \perp } = M ^ { \perp },$ ; confidence 0.972

129. b12018018.png ; $x \leq y \Leftrightarrow \exists z : x = y + z ^ { 2 }.$ ; confidence 0.972

130. c13011021.png ; $\{ t _ { i } \}$ ; confidence 0.972

131. o13008046.png ; $I ( k ) : = f ^ { \prime } ( 0 , k ) / f ( k )$ ; confidence 0.972

132. e12023028.png ; $\sigma ^ { 1 } : M \rightarrow E ^ { 1 }$ ; confidence 0.972

133. n12010041.png ; $\mathcal{F} _ { \nu }$ ; confidence 0.972

134. s12023056.png ; $K ( n \times m )$ ; confidence 0.972

135. q13003031.png ; $( U \otimes I \otimes \ldots ) \psi$ ; confidence 0.972

136. r13010052.png ; $( i , y )$ ; confidence 0.972

137. b13025025.png ; $\alpha = \angle B A C$ ; confidence 0.972

138. m1201906.png ; $\int _ { 0 } ^ { \infty } | f ( x ) | ^ { 2 } \frac { d x } { x } = \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { \infty } \tau \operatorname { tanh } ( \frac { \pi \tau } { 2 } ) \left| F ( \tau ) \right| ^ { 2 } d \tau,$ ; confidence 0.972

139. d03009010.png ; $P _ { \nu } = F _ { \nu } - m _ { \nu } w _ { \nu }$ ; confidence 0.972

140. a12008066.png ; $v _ { 1 } = d u / d t$ ; confidence 0.972

141. h12012076.png ; $t \phi$ ; confidence 0.972

142. c02468023.png ; $X ^ { ( 1 ) }$ ; confidence 0.972

143. s120230131.png ; $X \sim \operatorname { RS } _ { p , n } ( \phi )$ ; confidence 0.972

144. w12014016.png ; $\operatorname { Ext } _ { R } ^ { 1 } ( M , R ) = 0$ ; confidence 0.972

145. s130510130.png ; $w \in F ( v )$ ; confidence 0.972

146. w1200309.png ; $K = \left\{ f : \int | f | ^ { 2 } \leq 1 \right\}$ ; confidence 0.972

147. a01317032.png ; $L ( x )$ ; confidence 0.972

148. s120230116.png ; $\tau _ { 1 } \geq \ldots \geq \tau _ { p } \geq 0$ ; confidence 0.972

149. b13026046.png ; $U \subset \mathbf{R} ^ { n } \times [ 0,1 ]$ ; confidence 0.972

150. l12008020.png ; $( x , y , t ) \mapsto ( z , w ) = ( x + i y , t + i | z | ^ { 2 } )$ ; confidence 0.972

151. d1201506.png ; $d e ^ { - 1 }$ ; confidence 0.972

152. i12006086.png ; $P _ { G } = ( V \cup E , < )$ ; confidence 0.972

153. i13006024.png ; $l : = - \frac { d ^ { 2 } } { d x ^ { 2 } } + q ( x ),$ ; confidence 0.972

154. d0303305.png ; $E ^ { p } ( M )$ ; confidence 0.972

155. c12020014.png ; $W ^ { m + 1 }$ ; confidence 0.972

156. f12019028.png ; $C _ { G } ( n ) \leq N$ ; confidence 0.972

157. f120230136.png ; $J : T M \rightarrow T M$ ; confidence 0.972

158. j13004075.png ; $( n _ { + } - n _ { - } ) - ( s ( D _ { L } ) - 1 ) \leq e \leq E \leq ( n _ { + } - n _ { - } ) + ( s ( D _ { L } ) - 1 ),$ ; confidence 0.972

159. w13009068.png ; $\{ e _ { k } : k \geq 1 \}$ ; confidence 0.972

160. h046300105.png ; $n \leq 3$ ; confidence 0.972

161. a012460138.png ; $t , x$ ; confidence 0.972

162. d03024027.png ; $f_{( 2 k )} ( 0 ) = 0$ ; confidence 0.972

163. b12006014.png ; $\frac { 1 } { \operatorname { sin } ^ { 2 } \vartheta } . \frac { \partial ^ { 2 } Y } { \partial \varphi ^ { 2 } } + \frac { 1 } { \operatorname { sin } \vartheta } . \frac { \partial } { \partial \vartheta } \left( \operatorname { sin } \vartheta . \frac { \partial Y } { \partial \vartheta } \right) +$ ; confidence 0.972

164. k055840386.png ; $D _ { \alpha , \beta } \subset \mathbf C $ ; confidence 0.972

165. c120180385.png ; $r = 0 \in ( - 1 , + 1 )$ ; confidence 0.972

166. k12012035.png ; $x \in ( 0 , \infty )$ ; confidence 0.972

167. b015400101.png ; $\Psi _ { 2 }$ ; confidence 0.972

168. c13015061.png ; $\mathcal{G} ( \Omega )$ ; confidence 0.972

169. h12004031.png ; $W \cap U _ { \xi } =_{*} \emptyset$ ; confidence 0.972

170. c12017094.png ; $\operatorname { Col } M ( n + 1 )$ ; confidence 0.972

171. a01184056.png ; $G_0$ ; confidence 0.972

172. d12028066.png ; $\phi \in A ( \widetilde { D } )$ ; confidence 0.972

173. n12010026.png ; $b _ { i } \geq 0$ ; confidence 0.972

174. w1300804.png ; $X = \epsilon x$ ; confidence 0.972

175. n13002024.png ; $Z = \mathbf{R}$ ; confidence 0.972

176. a13012059.png ; $A G _ { d -1} ( d , q )$ ; confidence 0.972

177. l12003036.png ; $\operatorname{Hom}_{\mathcal{K}} ( H ^ { * } \operatorname { Map } ( Z , Y ) , H ^ { * } X ) \rightarrow$ ; confidence 0.972

178. l06003055.png ; $\frac { s ^ { \prime } } { s } = e ^ { - x / k }.$ ; confidence 0.972

179. b11052038.png ; $L _ { 2 } ( \Omega )$ ; confidence 0.972

180. b120430161.png ; $q \rightarrow 1$ ; confidence 0.972

181. f13028032.png ; $h ^ { \Pi } \in [ 0,1 ]$ ; confidence 0.972

182. r130070125.png ; $\{ h ( t , x ) \}_{\forall x \in E}$ ; confidence 0.972

183. c120180306.png ; $( R ( \nabla ) \otimes 1 ) g \in \otimes ^ { 4 } \mathcal{E}$ ; confidence 0.972

184. a01164066.png ; $i > 0$ ; confidence 0.972

185. g1200509.png ; $\psi ( x , y , t ) = \psi _ { 0 } ( y )$ ; confidence 0.972

186. w1201406.png ; $\operatorname { Ext } _ { R } ^ { 1 } ( M , N ) = 0$ ; confidence 0.972

187. d13002015.png ; $\alpha ( T E ) \leq k \alpha ( E ),$ ; confidence 0.972

188. t13014047.png ; $\chi _ { Q } : K _ { 0 } ( Q ) \rightarrow \mathbf{Z}$ ; confidence 0.972

189. f120230141.png ; $[ P , P ]$ ; confidence 0.972

190. c02211028.png ; $k > m$ ; confidence 0.972

191. c12002039.png ; $\operatorname{a.c.}A ^ { \alpha } f$ ; confidence 0.972

192. b12056014.png ; $\frac { 1 } { 4 } h ^ { 2 } \leq \lambda _ { 1 }.$ ; confidence 0.972

193. s12034030.png ; $H ^ { * } ( M ; \mathbf{Z} )$ ; confidence 0.972

194. f12010062.png ; $26$ ; confidence 0.972

195. w12021020.png ; $W = \left( \begin{array} { c c c c } { A } & { B } & { C } & { D } \\ { - B } & { A } & { - D } & { C } \\ { - C } & { D } & { A } & { - B } \\ { - D } & { - C } & { B } & { A } \end{array} \right)$ ; confidence 0.972

196. w12017034.png ; $G / \omega ( G )$ ; confidence 0.971

197. b110220249.png ; $i , j \in \mathbf{Z}$ ; confidence 0.971

198. o130060172.png ; $i \frac { \partial f } { \partial t _ { 2 } } + A _ { 2 } f = \Phi ^ { * } \sigma _ { 2 } u,$ ; confidence 0.971

199. a12011020.png ; $A ( 3 , n ) = 2 ^ { n + 3 } - 3$ ; confidence 0.971

200. d13013039.png ; $\Psi _ { + }$ ; confidence 0.971

201. a130240439.png ; $\operatorname{rank}( \mathbf{N}) \leq 1$ ; confidence 0.971

202. a1301302.png ; $\frac { \partial } { \partial t } P _ { 1 } - \frac { \partial } { \partial x } Q _ { 2 } + [ P _ { 1 } , Q _ { 2 } ] = 0,$ ; confidence 0.971

203. u13002010.png ; $\| \widehat { f } \| _ { 2 } = 1$ ; confidence 0.971

204. i130090206.png ; $G _ { \chi } ^ { * } ( T )$ ; confidence 0.971

205. m12015066.png ; $0 < U < I _ { p } , a > \frac { 1 } { 2 } ( p - 1 ) , b > \frac { 1 } { 2 } ( p - 1 ).$ ; confidence 0.971

206. p12014041.png ; $E = S \cup T$ ; confidence 0.971

207. m12013012.png ; $\frac { d N } { d t } = \lambda N \left( 1 - \frac { N } { K } \right) ,$ ; confidence 0.971

208. t12007084.png ; $V \times V \rightarrow \mathbf{R}$ ; confidence 0.971

209. c1201701.png ; $\gamma \equiv \gamma ^ { ( 2 n ) }$ ; confidence 0.971

210. s13045039.png ; $x _ { 1 } > x _ { 2 }$ ; confidence 0.971

211. s13058026.png ; $I = ( Q ^ { 2 } + U ^ { 2 } + V ^ { 2 } ) ^ { 1 / 2 },$ ; confidence 0.971

212. b11021014.png ; $S \neq \emptyset$ ; confidence 0.971

213. p0754803.png ; $( p \& q ) \supset p$ ; confidence 0.971

214. k12013019.png ; $p ( x ) = \sqrt { 1 - x ^ { 2 } }$ ; confidence 0.971

215. d11022038.png ; $\sum _ { 1 } ^ { m } r _ { j } = n$ ; confidence 0.971

216. m13025025.png ; $u v = F ^ { - 1 } ( F u ^ { * } F v )$ ; confidence 0.971

217. p07548015.png ; $A \& B \Leftrightarrow \neg ( A \supset \neg B ) , \quad A \vee B \Leftrightarrow \neg A \supset B,$ ; confidence 0.971

218. c120180457.png ; $\mathbf{R} ^ { + } = ( 0 , \infty )$ ; confidence 0.971

219. b12031044.png ; $f \in L ^ { 1 } \cap L ^ { 2 } ( \mathbf{R} ^ { 2 k + 1 } )$ ; confidence 0.971

220. d1203004.png ; $d Y ( t ) = h ( t , X ( t ) , Y ( t ) ) d t + g ( t , Y ( t ) ) d \widetilde { B } ( t ),$ ; confidence 0.971

221. b12009034.png ; $\operatorname { Re } p _ { 2 } ( \xi , \tau ) > 0$ ; confidence 0.971

222. r13012011.png ; $[ x _ { 1 } , y _ { 1 } ] + [ x _ { 2 } , y _ { 2 } ] = [ x _ { 1 } + x _ { 2 } , y _ { 1 } + y _ { 2 } ]$ ; confidence 0.971

223. a130130100.png ; $A K N S$ ; confidence 0.971

224. m12023042.png ; $( ( \partial f ) ^ { - 1 } + t l ) ^ { - 1 }$ ; confidence 0.971

225. l13006099.png ; $k \times r$ ; confidence 0.971

226. a130040533.png ; $C : \mathcal{P} ( A ) \rightarrow \mathcal{P} ( A )$ ; confidence 0.971

227. b12016066.png ; $x _ { 2 } ^ { \prime } = x _ { 3 } ^ { \prime } = \frac { 1 } { 2 } [ ( x _ { 1 } + x _ { 2 } ) s - x _ { 1 } v ],$ ; confidence 0.971

228. a120160153.png ; $f ( y_{i t} )$ ; confidence 0.971

229. i13006026.png ; $L ^ { 2 } ( \mathbf{R} _ { + } )$ ; confidence 0.971

230. m130260241.png ; $M ( B )$ ; confidence 0.971

231. h046010148.png ; $n < 6$ ; confidence 0.971

232. a12008043.png ; $V \times L ^ { 2 } ( \Omega )$ ; confidence 0.971

233. b110220209.png ; $i = m = 1$ ; confidence 0.971

234. u13002037.png ; $a b > 1$ ; confidence 0.971

235. i13007036.png ; $| x | > a$ ; confidence 0.971

236. r13005052.png ; $( x y ) ^ { p } = x ^ { p } y ^ { p } z$ ; confidence 0.971

237. a130040345.png ; $\widetilde { \Omega } _ { \mathcal{D} } F =$ ; confidence 0.971

238. b12040062.png ; $B \subset G$ ; confidence 0.971

239. s12026013.png ; $\Gamma ( L ^ { 2 } ( \mathbf{R} ^ { n } ) )$ ; confidence 0.971

240. n067520246.png ; $\sum _ { i = 1 } ^ { m } d _ { i } = n$ ; confidence 0.971

241. b13002019.png ; $x , y \in J$ ; confidence 0.971

242. n12003033.png ; $f : L A \times B \rightarrow C$ ; confidence 0.971

243. e12007060.png ; $F ^ { ( k + 1 ) } = f$ ; confidence 0.971

244. l12005015.png ; $L _ { 2 } ( \mathbf{R}_ { + } ; \operatorname { cosh } ( \pi \tau ) )$ ; confidence 0.971

245. s12022020.png ; $\partial M \neq \emptyset$ ; confidence 0.971

246. e12018015.png ; $\operatorname{sign}( M )$ ; confidence 0.971

247. o13006076.png ; $\lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \gamma$ ; confidence 0.971

248. q12008067.png ; $\operatorname{L}$ ; confidence 0.971

249. k12008030.png ; $Q ( \partial / \partial x ) ( K _ { p } ( f ) ) \equiv 0$ ; confidence 0.971

250. n13003036.png ; $\rho ( x , y ) w ( x , y )$ ; confidence 0.971

251. d0300908.png ; $F _ { \nu } = m _ { \nu } w _ { \nu } + P _ { \nu },$ ; confidence 0.971

252. f120110167.png ; $g + h$ ; confidence 0.971

253. c12018033.png ; $M \rightarrow \mathbf{R}$ ; confidence 0.971

254. e13007089.png ; $1 \leq h \leq H$ ; confidence 0.971

255. q13004044.png ; $\varphi : G ^ { \prime } \rightarrow \mathbf{R} ^ { 2 }$ ; confidence 0.970

256. e13007080.png ; $\zeta ( 1 / 2 + i t ) \ll t ^ { p } \operatorname { log } t$ ; confidence 0.970

257. b120130107.png ; $\| f / \varphi \| _ { p } \leq \| f \| _ { p }$ ; confidence 0.970

258. b12004095.png ; $L _ { \infty }$ ; confidence 0.970

259. m12021011.png ; $K \mapsto h _ { K }$ ; confidence 0.970

260. m1201602.png ; $\phi _ { X } ( T ) = \operatorname { etr } ( i T ^ { \prime } M ) \psi ( \operatorname { tr } ( T ^ { \prime } \Sigma T \Phi ) )$ ; confidence 0.970

261. c02190072.png ; $2 N$ ; confidence 0.970

262. l12004069.png ; $w _ { 1 } = ( 1 + \operatorname { sign } ( c ) ) / 2$ ; confidence 0.970

263. d03033021.png ; $H _ { c } ^ { * } ( M , \mathbf{R} )$ ; confidence 0.970

264. s130540127.png ; $K _ { 2 } R$ ; confidence 0.970

265. b0164209.png ; $1 - p$ ; confidence 0.970

266. a13030032.png ; $\overline { \theta ( A ) } = B$ ; confidence 0.970

267. k055840193.png ; $\leq 2 \kappa + 1$ ; confidence 0.970

268. s12004065.png ; $| \lambda | = n$ ; confidence 0.970

269. b12009088.png ; $f ( z ) \in B ( \alpha / m )$ ; confidence 0.970

270. c130070233.png ; $T \cap k ( C _ { 2 } ) = T _ { 2 }$ ; confidence 0.970

271. e120070114.png ; $g \in C ^ { 0 } ( \Gamma , k + 2 , \mathbf{v} )$ ; confidence 0.970

272. g130040175.png ; $B \subset \Omega \times G ( n , m )$ ; confidence 0.970

273. m1202404.png ; $\psi \rightarrow \psi [ 1 ]$ ; confidence 0.970

274. f12004023.png ; $\varphi : X \times W \rightarrow \overline { \mathbf{R} }$ ; confidence 0.970

275. d11008039.png ; $w ^ { H }$ ; confidence 0.970

276. f13007033.png ; $F ^ { k } ( 2 , m ) =$ ; confidence 0.970

277. a11016052.png ; $\beta _ { k }$ ; confidence 0.970

278. e12011048.png ; $\nabla \times \mathbf{H} = \frac { 1 } { c } \mathbf{J} , \nabla . \mathbf{B} = 0,$ ; confidence 0.970

279. o1200103.png ; $\operatorname { det } \mathcal{F} = f ( \theta ).$ ; confidence 0.970

280. i1300109.png ; $\chi = \chi _ { \lambda }$ ; confidence 0.970

281. c12021099.png ; $\mathcal{L} ( T _ { n } | P _ { n } ^ { \prime } ) \Rightarrow N ( \Gamma h , \Gamma )$ ; confidence 0.970

282. e12026050.png ; $( t , \nu )$ ; confidence 0.970

283. l12008027.png ; $( x , y ) \mapsto ( x ^ { 2 } / 2 + i y )$ ; confidence 0.970

284. e120120114.png ; $Q ( \theta | \theta ^ { * } )$ ; confidence 0.970

285. b12009082.png ; $L ( r ) = \int _ { 0 } ^ { 2 \pi } \left| z f ^ { \prime } ( z ) \right| d \theta = O \left( \operatorname { log } \frac { 1 } { 1 - r } \right)$ ; confidence 0.970

286. b13020088.png ; $\Delta _ { - } = - \Delta _ { + }$ ; confidence 0.970

287. a11042060.png ; $K _ { 1 }$ ; confidence 0.970

288. s12018056.png ; $M = M ^ { \perp \perp }$ ; confidence 0.970

289. p13007064.png ; $L _ { E } ^ { * } ( z ) = \operatorname { limsup } _ { w \rightarrow z } L _ { E } ( w )$ ; confidence 0.970

290. o13005069.png ; $\Theta _ { \Delta } ( z )$ ; confidence 0.970

291. s08602048.png ; $\Phi ^ { - } ( t _ { 0 } )$ ; confidence 0.970

292. b1200106.png ; $\left\{ x _ { 1 } ^ { \prime } , x _ { 2 } ^ { \prime } , u ^ { \prime } , \frac { \partial u ^ { \prime } } { \partial x _ { 1 } ^ { \prime } } , \frac { \partial u ^ { \prime } } { \partial x _ { 2 } ^ { \prime } } \right\}$ ; confidence 0.970

293. b12055053.png ; $b _ { p } ( x ) = \operatorname { sup } _ { \gamma } b _ { \gamma } ( x )$ ; confidence 0.970

294. l06003043.png ; $\alpha = \pi / 2$ ; confidence 0.970

295. e12023027.png ; $\sigma ^ { 1 }$ ; confidence 0.970

296. s0860209.png ; $| \phi ( t _ { 1 } ) - \phi ( t _ { 2 } ) | \leq C | t _ { 1 } - t _ { 2 } | ^ { \alpha } , \quad 0 < \alpha \leq 1;$ ; confidence 0.970

297. b12034067.png ; $z _ { 0 } = 0$ ; confidence 0.970

298. f12010074.png ; $L ( s )$ ; confidence 0.970

299. b12044044.png ; $k G$ ; confidence 0.970

300. b13025059.png ; $\overline { O K } = \frac { \overline { O \Omega } } { \operatorname { cos } \omega }$ ; confidence 0.970

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/23. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/23&oldid=45922