Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/16

From Encyclopedia of Mathematics
Jump to: navigation, search

List

1. a13012061.png ; $A G ( 2 , q )$ ; confidence 0.896

2. i05235022.png ; $D = b ^ { 2 } - a c$ ; confidence 0.896

3. w098100198.png ; $f V = V f = p$ ; confidence 0.896

4. a11002010.png ; $g \neq 1$ ; confidence 0.896

5. a0117402.png ; $X$ ; confidence 0.896

6. a014170110.png ; $X \rightarrow X$ ; confidence 0.896

7. a13013035.png ; $Q _ { 0 } = P _ { 0 }$ ; confidence 0.896

8. i05113068.png ; $\overline { \rho } _ { L }$ ; confidence 0.896

9. s086940114.png ; $\operatorname { det } S \neq 0$ ; confidence 0.896

10. a01099050.png ; $g ^ { i j } T _ { i j k } = 0$ ; confidence 0.896

11. t13013030.png ; $F = \{ C : \operatorname { Hom } _ { \Lambda } ( T , C ) = 0 \}$ ; confidence 0.896

12. a01138045.png ; $x \& ( x \vee y ) = x , \quad x \vee ( x \& y ) = x$ ; confidence 0.895

13. a130240363.png ; $SS _ { H }$ ; confidence 0.895

14. a130180179.png ; $V \subseteq \square ^ { \alpha } U$ ; confidence 0.895

15. a01086036.png ; $M \mapsto M ^ { * }$ ; confidence 0.895

16. a1300106.png ; $B$ ; confidence 0.895

17. a130240106.png ; $t$ ; confidence 0.895

18. b12016030.png ; $x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$ ; confidence 0.895

19. g043810179.png ; $\alpha f \in D ^ { \prime } ( O )$ ; confidence 0.895

20. h047380204.png ; $\sum _ { \nu \in A } \| x _ { \nu } \| ^ { 2 } < \infty$ ; confidence 0.895

21. i05162045.png ; $\Gamma ( z ) = \frac { 1 } { e ^ { 2 i \pi z } - 1 } \int _ { L _ { 1 } } \zeta ^ { z - 1 } e ^ { - \zeta } d \zeta$ ; confidence 0.895

22. s0858103.png ; $\phi : U \rightarrow \sum _ { i \in I } U _ { l }$ ; confidence 0.895

23. w120110192.png ; $X \in \Phi$ ; confidence 0.895

24. a12018010.png ; $\Delta ^ { 2 } S _ { n } = \Delta S _ { n + 1 } - \Delta S _ { n } = S _ { n + 2 } - 2 S _ { n + 1 } + S _ { n }$ ; confidence 0.895

25. a11016023.png ; $Q ( x ) = \frac { 1 } { 2 } \langle x , A x \rangle - \langle b , x \rangle$ ; confidence 0.895

26. t130130124.png ; $\Gamma = \operatorname { End } _ { \Lambda } T$ ; confidence 0.895

27. a13007091.png ; $\sigma ^ { 0 } ( m ) / m < \sigma ^ { 0 } ( n ) / n$ ; confidence 0.894

28. a01018022.png ; $\phi ( s ) = \sum _ { n = 1 } ^ { \infty } \alpha _ { n } e ^ { - \lambda _ { n } s } , \quad s = \sigma + i t , \quad \lambda _ { n } > 0$ ; confidence 0.894

29. a12020030.png ; $N > 2$ ; confidence 0.894

30. a12022022.png ; $Y$ ; confidence 0.894

31. a11016019.png ; $x _ { k + 1 } = M ^ { - 1 } ( N x _ { k } + b )$ ; confidence 0.894

32. a01431027.png ; $\exists x A$ ; confidence 0.894

33. l05876050.png ; $\| \xi _ { i j } \|$ ; confidence 0.894

34. a01146084.png ; $m > 1$ ; confidence 0.894

35. a011650391.png ; $K S$ ; confidence 0.893

36. a12008029.png ; $v \in V$ ; confidence 0.893

37. c11048046.png ; $D ^ { \perp }$ ; confidence 0.893

38. e110070191.png ; $f ^ { \prime } ( 1 ) = \prod _ { n > 0 } ( \frac { 1 - q ^ { 2 n } } { 1 + q ^ { 2 n } } ) ^ { 2 }$ ; confidence 0.893

39. q07631089.png ; $[ X _ { i } ^ { + } , X _ { j } ^ { - } ] = 2 \delta _ { i j } h ^ { - 1 } \operatorname { sinh } ( h H _ { i } / 2 )$ ; confidence 0.893

40. a011640156.png ; $p _ { g } = 1$ ; confidence 0.893

41. d034120219.png ; $H _ { K } ^ { p } ( X , F )$ ; confidence 0.893

42. n06690054.png ; $C ^ { k } = \operatorname { Map } ( G ^ { k } , A ) , \quad k = 0,1,2$ ; confidence 0.893

43. t130140149.png ; $K$ ; confidence 0.892

44. a01121070.png ; $q ( x ) \neq 0 \quad \text { for } x \in I , x \neq x _ { 0 } , \quad q ^ { \prime } ( x _ { 0 } ) > 0$ ; confidence 0.892

45. a0116408.png ; $| K _ { V } |$ ; confidence 0.892

46. e03696093.png ; $\eta ^ { \prime }$ ; confidence 0.892

47. a13008035.png ; $\frac { f ^ { \prime } ( L ) } { f ( L ) } < \frac { g ^ { \prime } ( L ; m , s ) } { g ( L ; m , s ) } , \frac { f ^ { \prime } ( R ) } { f ( R ) } < \frac { g ^ { \prime } ( R ; m , s ) } { g ( R ; m , s ) }$ ; confidence 0.892

48. c022780356.png ; $\Omega$ ; confidence 0.892

49. c02490030.png ; $q = p ^ { r }$ ; confidence 0.892

50. e12023061.png ; $L \mapsto E ( L )$ ; confidence 0.892

51. h0484406.png ; $w = z ^ { - \gamma / 2 } ( z - 1 ) ^ { ( \gamma - \alpha - \beta - 1 ) / 2 } u$ ; confidence 0.892

52. l05949032.png ; $\alpha ^ { ( 0 ) }$ ; confidence 0.892

53. m064250151.png ; $\tau \cup A C \cup B C$ ; confidence 0.892

54. s0861605.png ; $J _ { m + n + 1 } ( x ) =$ ; confidence 0.892

55. w09771016.png ; $W ( G )$ ; confidence 0.892

56. s085590596.png ; $\frac { d w } { d z } = P ( z , w )$ ; confidence 0.892

57. w120090299.png ; $n ^ { + }$ ; confidence 0.892

58. a01064019.png ; $\tau _ { 2 } ( m ) = \tau ( m )$ ; confidence 0.892

59. a11046021.png ; $\frac { \partial E } { \partial t } + \frac { \partial F } { \partial l } = 0$ ; confidence 0.892

60. a130050182.png ; $a ( n )$ ; confidence 0.892

61. l05848081.png ; $( G )$ ; confidence 0.892

62. d034120552.png ; $- F ^ { * } ( 0 , y ^ { * } ) \rightarrow \operatorname { sup } , \quad y ^ { * } \in Y ^ { * }$ ; confidence 0.892

63. f040820111.png ; $A \otimes z Q$ ; confidence 0.892

64. a0109907.png ; $k = ( \frac { d ^ { 2 } r } { d s ^ { 2 } } , \frac { d ^ { 3 } r } { d s ^ { 3 } } )$ ; confidence 0.891

65. a13024051.png ; $3$ ; confidence 0.891

66. b01729042.png ; $\partial M _ { A } \subset X \subset M _ { A }$ ; confidence 0.891

67. c024780261.png ; $( x ^ { 2 } / a ^ { 2 } ) + ( y ^ { 2 } / b ^ { 2 } ) = 1$ ; confidence 0.891

68. f04058050.png ; $\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$ ; confidence 0.891

69. l05868023.png ; $\Gamma ( G ) \subset \mathfrak { h }$ ; confidence 0.891

70. a0141708.png ; $X = M / \Gamma$ ; confidence 0.891

71. a120070106.png ; $L ( t , x , D _ { x } )$ ; confidence 0.891

72. c02565076.png ; $\{ f _ { n } \}$ ; confidence 0.891

73. a1100208.png ; $n = k - \lambda$ ; confidence 0.891

74. a110040127.png ; $A$ ; confidence 0.891

75. q07631097.png ; $\Delta ( \alpha ) = \alpha \otimes 1 + 1 \otimes \alpha$ ; confidence 0.891

76. a13007019.png ; $3 ^ { 3 } .5 .79$ ; confidence 0.891

77. e03696064.png ; $y _ { j } \theta$ ; confidence 0.890

78. a12008047.png ; $u \in C ( [ 0 , T ] ; H ^ { 2 } ( \Omega ) ) \cap C ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.890

79. a12015040.png ; $( g ) Y = g Y g ^ { - 1 } , ( \text { ad } X ) Y = X Y - Y X$ ; confidence 0.890

80. a011300141.png ; $\tau \in P _ { \mu } / \Pi$ ; confidence 0.890

81. k12009012.png ; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$ ; confidence 0.890

82. l058510120.png ; $\operatorname { dim } \mathfrak { g } = n ( 2 n - 1 )$ ; confidence 0.890

83. h047970120.png ; $( A , m , e )$ ; confidence 0.889

84. t13014091.png ; $R \simeq K Q / I$ ; confidence 0.889

85. a12015018.png ; $( G )$ ; confidence 0.889

86. a130180167.png ; $i , j \in \omega$ ; confidence 0.889

87. w120090388.png ; $\pi$ ; confidence 0.889

88. a110420126.png ; $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q )$ ; confidence 0.889

89. a13013047.png ; $i$ ; confidence 0.889

90. a011600128.png ; $f _ { 1 } = \ldots = f _ { m }$ ; confidence 0.889

91. s08521071.png ; $\square ^ { 2 } F _ { 4 } ( q ) ^ { \prime }$ ; confidence 0.889

92. a11028067.png ; $x y \in E ( D )$ ; confidence 0.889

93. a12012051.png ; $( x ^ { \prime } , y ^ { \prime } ) \in J$ ; confidence 0.889

94. d03249023.png ; $F = G _ { 0 } \subset G _ { 1 } \subset \ldots$ ; confidence 0.888

95. a01021022.png ; $\omega ^ { * } \overline { \pi }$ ; confidence 0.888

96. a12007094.png ; $\lambda \in S _ { \theta _ { 0 } } , \quad t , s \in [ 0 , T ]$ ; confidence 0.888

97. a01148078.png ; $a ^ { 1 / n }$ ; confidence 0.888

98. s13054047.png ; $\{ a , b \} = 1$ ; confidence 0.888

99. a11001054.png ; $\| A \| = 10 ^ { 5 }$ ; confidence 0.887

100. a01020066.png ; $A \oplus B$ ; confidence 0.887

101. l058590191.png ; $u , v , u v \in U _ { 2 }$ ; confidence 0.887

102. d11017032.png ; $C _ { 3 }$ ; confidence 0.887

103. a12017010.png ; $b ( t ) = \int _ { 0 } ^ { + \infty } \beta ( \alpha ) p ( \alpha , t ) d \alpha$ ; confidence 0.887

104. n06649064.png ; $R < \infty$ ; confidence 0.887

105. a01091011.png ; $C _ { 1 } \frac { u ( t _ { n } + 1 ) - u ( t _ { n } ) } { \tau _ { n } } = f - A u ( t _ { n } )$ ; confidence 0.887

106. c02724015.png ; $x ^ { 3 } + y ^ { 3 } - 3 a x y = 0$ ; confidence 0.887

107. m06314012.png ; $- \frac { \partial D } { \partial t } + \operatorname { rot } H = J$ ; confidence 0.887

108. p07237060.png ; $\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$ ; confidence 0.887

109. q076820220.png ; $E \theta ( t ) \theta ( t + u ) = \int _ { 0 } F ( t + u - v ) ( 1 - G ( t - v ) ) d m ( v )$ ; confidence 0.887

110. v09687032.png ; $\tau _ { j } < 0$ ; confidence 0.887

111. w12011079.png ; $A ^ { * } \sigma A = \sigma$ ; confidence 0.887

112. a1200603.png ; $\Omega \subset R ^ { m }$ ; confidence 0.887

113. a01417020.png ; $M = P ^ { 1 } ( C )$ ; confidence 0.887

114. s085590485.png ; $X ( a ) = 0$ ; confidence 0.887

115. a011650457.png ; $d \equiv \square _ { \Phi } h \Leftrightarrow \{ \alpha \in \Lambda : d ( \alpha ) = h ( \alpha ) \} \in \Phi \quad ( d , h \in D )$ ; confidence 0.886

116. m06451033.png ; $\phi : M ( pt ) \rightarrow h _ { M } ( pt )$ ; confidence 0.886

117. b01747034.png ; $( i i + 1 )$ ; confidence 0.886

118. m12011054.png ; $\pi _ { 1 } ( M ) \neq Z _ { 2 }$ ; confidence 0.886

119. p075350108.png ; $P _ { n } ( R )$ ; confidence 0.886

120. v0966506.png ; $n \geq 12$ ; confidence 0.886

121. a11033014.png ; $N ^ { * } = \operatorname { card } ( U _ { n } ^ { * } ) / p$ ; confidence 0.886

122. a11028069.png ; $x z \in E ( D )$ ; confidence 0.886

123. a01068033.png ; $A _ { i } = \{ a _ { i } \}$ ; confidence 0.886

124. d034120252.png ; $\operatorname { Re } ( z e ^ { - i \phi } ) > c$ ; confidence 0.886

125. a01138046.png ; $x \& ( y \vee z ) = ( x \& y ) \vee ( x \& z )$ ; confidence 0.886

126. q076310143.png ; $( t _ { j } )$ ; confidence 0.885

127. a011650236.png ; $\alpha \in \Lambda$ ; confidence 0.885

128. b01539036.png ; $\int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ]$ ; confidence 0.885

129. t12001030.png ; $5$ ; confidence 0.885

130. f11015067.png ; $t \subset v$ ; confidence 0.885

131. w09791036.png ; $L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$ ; confidence 0.885

132. i0523503.png ; $y \rightarrow \gamma x + \delta y$ ; confidence 0.885

133. a011650447.png ; $2$ ; confidence 0.885

134. a11015014.png ; $\alpha ( t )$ ; confidence 0.885

135. q076310124.png ; $R ^ { 23 } = \sum _ { i } 1 \otimes x _ { i } \otimes y _ { i }$ ; confidence 0.885

136. d031830319.png ; $u _ { A }$ ; confidence 0.885

137. a01164098.png ; $V \rightarrow V ^ { \prime }$ ; confidence 0.885

138. a13017025.png ; $B \circ \Pi$ ; confidence 0.885

139. a12005024.png ; $u ( 0 ) = u _ { 0 }$ ; confidence 0.885

140. a13024085.png ; $\gamma _ { i j }$ ; confidence 0.884

141. a01121077.png ; $y _ { j } ( x ) = Y _ { j } ( x ) [ 1 + O ( \frac { 1 } { \lambda } ) ] , \quad a \leq x \leq x _ { 0 } , \quad j = 0,1$ ; confidence 0.884

142. a130240334.png ; $\Gamma = B X$ ; confidence 0.884

143. a130240239.png ; $MS _ { e }$ ; confidence 0.884

144. c11017044.png ; $C \rho _ { p } C ^ { \prime }$ ; confidence 0.884

145. c12019044.png ; $T ( M )$ ; confidence 0.884

146. a01055037.png ; $G = Z _ { p }$ ; confidence 0.884

147. a01081061.png ; $\int _ { t _ { 0 } } ^ { t _ { 1 } } [ \overline { \xi } l ( y ) - \overline { l ^ { * } ( \xi ) } y ] d t = 0$ ; confidence 0.884

148. a11040021.png ; $t \mapsto T ^ { * } ( t ) x ^ { * } \text { is strongly continuous on } [ 0 , \infty ) \}$ ; confidence 0.884

149. e0369602.png ; $F \supset F _ { 0 }$ ; confidence 0.883

150. f040820155.png ; $\alpha _ { \gamma } ( \gamma _ { 0 } ( T ) ) = \gamma ( T )$ ; confidence 0.883

151. l05761045.png ; $m < n ^ { ( 1 / 3 ) - \delta }$ ; confidence 0.883

152. m130180141.png ; $H _ { n - 2 }$ ; confidence 0.883

153. a130060134.png ; $K _ { 0 } > 1$ ; confidence 0.883

154. a110010293.png ; $\leq k ( T ) _ { 1 \leq r \leq m - 1,1 \leq i \leq p } \frac { | f ^ { ( r ) } ( \lambda _ { i } ) - g ^ { ( r ) } ( \lambda _ { i } ) | } { r ! } m _ { i }$ ; confidence 0.883

155. c02542017.png ; $i = 0,1$ ; confidence 0.883

156. a12018054.png ; $( S _ { n } )$ ; confidence 0.882

157. s08610069.png ; $\pi _ { i } ( M ) = 0$ ; confidence 0.882

158. a01174022.png ; $\operatorname { PLG } ( N , k )$ ; confidence 0.882

159. a130070111.png ; $U _ { a }$ ; confidence 0.882

160. c022780207.png ; $e ^ { x _ { i } } - 1$ ; confidence 0.882

161. c02691013.png ; $\Gamma ( C ) = V$ ; confidence 0.882

162. i050650262.png ; $K ( T M ^ { g } ) \otimes C \rightarrow C$ ; confidence 0.882

163. l11014038.png ; $\epsilon$ ; confidence 0.882

164. s120040132.png ; $\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$ ; confidence 0.882

165. q076310123.png ; $R ^ { 13 } = \sum _ { i } x _ { i } \otimes 1 \otimes y _ { i }$ ; confidence 0.882

166. a01121031.png ; $\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } a _ { n } z ^ { - 3 n / 2 } \quad \text { for } | \operatorname { arg } z | \leq \pi - \epsilon$ ; confidence 0.882

167. a130040786.png ; $A , B \in K$ ; confidence 0.882

168. a110040126.png ; $4$ ; confidence 0.882

169. j05427080.png ; $[ \alpha , \mathfrak { g } - 1 ] = 0$ ; confidence 0.882

170. w120090295.png ; $\mathfrak { n } ^ { + } = \sum _ { \alpha \in \Phi ^ { + } } \mathfrak { g } _ { \alpha }$ ; confidence 0.882

171. s085590402.png ; $y = \sum _ { i \geq n } a _ { i } t$ ; confidence 0.881

172. l0584705.png ; $90 = g$ ; confidence 0.881

173. a01164035.png ; $t = r = d = 0$ ; confidence 0.881

174. a120280141.png ; $S _ { E } = \{ \omega \in \hat { G } : E + \omega \subseteq E \}$ ; confidence 0.881

175. h0484203.png ; $F _ { + } ( x + i 0 ) - F _ { - } ( x - i 0 )$ ; confidence 0.881

176. r08160033.png ; $y _ { 2 } = ( x _ { 1 } + x _ { 3 } ) ( x _ { 2 } + x _ { 4 } )$ ; confidence 0.881

177. y09907014.png ; $t _ { \lambda } ^ { \prime }$ ; confidence 0.881

178. l058510105.png ; $\operatorname { dim } \mathfrak { g } = n ( n + 2 )$ ; confidence 0.881

179. a0107008.png ; $r$ ; confidence 0.881

180. b12027061.png ; $p _ { j } \geq 0$ ; confidence 0.881

181. b01539044.png ; $i , j = 1,2$ ; confidence 0.881

182. q07631012.png ; $S : A \rightarrow A \otimes A$ ; confidence 0.881

183. w120090355.png ; $M _ { K } = K \otimes _ { Z } M$ ; confidence 0.880

184. d034120443.png ; $A \cup \{ O \}$ ; confidence 0.880

185. a130050176.png ; $F _ { q }$ ; confidence 0.880

186. a010950110.png ; $\nabla _ { Y } ( f X ) = ( Y f ) X + f \nabla _ { Y } X , \quad \nabla _ { f } Y X = f \nabla _ { Y } X$ ; confidence 0.880

187. a130040403.png ; $P K$ ; confidence 0.879

188. a12010033.png ; $\langle y _ { 1 } - y _ { 2 } , x _ { 1 } - x _ { 2 } \rangle \geq 0$ ; confidence 0.879

189. a13007020.png ; $945 = 3 ^ { 3 } .5 .7$ ; confidence 0.879

190. d032600176.png ; $w _ { N } ( \alpha ) \geq n$ ; confidence 0.879

191. a11017038.png ; $F \equiv \operatorname { grad } \phi$ ; confidence 0.879

192. h04797085.png ; $H ^ { * } ( G , K )$ ; confidence 0.879

193. a13006026.png ; $| I | = \operatorname { card } ( R / I )$ ; confidence 0.879

194. r077630100.png ; $0 \leq \frac { 2 ( \chi , \alpha ) } { ( \alpha , \alpha ) } < p \quad \text { for all } \alpha \in \Delta$ ; confidence 0.879

195. a130240222.png ; $r$ ; confidence 0.879

196. a01029079.png ; $X _ { \delta }$ ; confidence 0.879

197. a13006042.png ; $P _ { q }$ ; confidence 0.879

198. a0111603.png ; $X = \operatorname { Spec } A$ ; confidence 0.879

199. a01093030.png ; $\psi _ { n + 1 } = \text { const, } \quad \omega _ { n + 1 } = \alpha \frac { \partial \psi _ { n } } { \partial n } + \omega _ { n }$ ; confidence 0.879

200. a11038049.png ; $T ^ { * }$ ; confidence 0.878

201. a01099043.png ; $N \nu = 1$ ; confidence 0.878

202. s085590501.png ; $X : G \rightarrow R$ ; confidence 0.878

203. c02517037.png ; $\omega ^ { k } = d x ^ { k }$ ; confidence 0.878

204. c0264605.png ; $\alpha _ { i } < b _ { i }$ ; confidence 0.878

205. l12006098.png ; $H \phi$ ; confidence 0.878

206. t09399044.png ; $Q _ { 1 } \cup \square \ldots \cup Q _ { m }$ ; confidence 0.878

207. a12010039.png ; $\forall x _ { i } \in D ( A )$ ; confidence 0.878

208. q076310113.png ; $( \text { id } \otimes \Delta ) ( R ) = R ^ { 13 } R ^ { 12 }$ ; confidence 0.878

209. a130060125.png ; $T ^ { \# } ( n )$ ; confidence 0.878

210. a01150023.png ; $x = \lambda ( \theta ) , y = \Delta ( \theta )$ ; confidence 0.878

211. b1105803.png ; $E ^ { * }$ ; confidence 0.878

212. a11050058.png ; $K ^ { \prime }$ ; confidence 0.878

213. a110040153.png ; $C ^ { 2 } : 1 E$ ; confidence 0.878

214. a011640114.png ; $p _ { g } = 0$ ; confidence 0.877

215. a01121021.png ; $x \rightarrow - \infty$ ; confidence 0.877

216. a130050177.png ; $Z _ { q } ( y ) = \sum _ { n = 0 } ^ { \infty } q ^ { n } y ^ { n } = ( 1 - q y ) ^ { - 1 }$ ; confidence 0.877

217. a011600205.png ; $( \frac { K / k } { \mathfrak { p } } ) )$ ; confidence 0.877

218. l05866032.png ; $N ( n , R )$ ; confidence 0.877

219. c02697049.png ; $| w | < 1 / 16$ ; confidence 0.877

220. f04221056.png ; $e _ { \lambda } ^ { 1 } \in X$ ; confidence 0.877

221. m06443090.png ; $B O$ ; confidence 0.877

222. n067520250.png ; $d j \neq 0$ ; confidence 0.877

223. a11002062.png ; $3$ ; confidence 0.876

224. a11007023.png ; $: C ( K ) \rightarrow L _ { p } ( K , \mu )$ ; confidence 0.876

225. g0436207.png ; $R [ F ( t ) ] = ( 1 - t ^ { 2 } ) F ^ { \prime \prime } - ( 2 \rho - 1 ) t F ^ { \prime \prime }$ ; confidence 0.876

226. a0101806.png ; $z = z 0$ ; confidence 0.876

227. a12015049.png ; $N = \{ X \in \mathfrak { g } :$ ; confidence 0.876

228. d034120403.png ; $y = 0$ ; confidence 0.876

229. a12004024.png ; $| x ( t ) \| \leq c \| x _ { 0 } \| \text { for all } t \in [ 0 , \tau ]$ ; confidence 0.875

230. a01145024.png ; $p 3$ ; confidence 0.875

231. a01149063.png ; $f _ { 1 } ^ { \prime } ( x ) , \ldots , f _ { k } ^ { \prime } ( x )$ ; confidence 0.875

232. a1302403.png ; $n \times 1$ ; confidence 0.875

233. l05868042.png ; $Z _ { g } = \Gamma _ { 1 } / \Gamma _ { 0 }$ ; confidence 0.875

234. a01233063.png ; $f ( X )$ ; confidence 0.875

235. a12012069.png ; $p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$ ; confidence 0.875

236. a011600189.png ; $( K / k )$ ; confidence 0.875

237. e03525091.png ; $z _ { k } \in L$ ; confidence 0.875

238. i130090231.png ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875

239. l058820374.png ; $\tau = \{ t _ { i } \} _ { i = 0 } ^ { i = n }$ ; confidence 0.875

240. l0607706.png ; $\operatorname { inv } ( x )$ ; confidence 0.875

241. t09390073.png ; $g _ { n } ( \Omega )$ ; confidence 0.875

242. a01164087.png ; $H _ { 2 } ( V , Z )$ ; confidence 0.875

243. a13013039.png ; $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$ ; confidence 0.875

244. a120050132.png ; $R ^ { N }$ ; confidence 0.875

245. a01220067.png ; $f _ { 0 } ( z )$ ; confidence 0.874

246. a110010299.png ; $m$ ; confidence 0.874

247. m06444056.png ; $c = 0$ ; confidence 0.874

248. s08583016.png ; $| w | = \rho < 1$ ; confidence 0.874

249. a01060031.png ; $p = - \infty$ ; confidence 0.874

250. a01076024.png ; $J = I + \epsilon \omega ^ { \prime } x v / \omega ^ { 2 }$ ; confidence 0.874

251. a01162016.png ; $m > 2$ ; confidence 0.874

252. g0439306.png ; $h ; G \rightarrow A$ ; confidence 0.874

253. l05883010.png ; $\epsilon \neq 0$ ; confidence 0.874

254. b110100235.png ; $D _ { n }$ ; confidence 0.874

255. a01046086.png ; $f ( \alpha + h ) = \sum _ { n = 0 } ^ { \infty } P _ { n } ( h )$ ; confidence 0.873

256. s085590274.png ; $\phi _ { \alpha } ( \alpha ) \neq 0$ ; confidence 0.873

257. c02236032.png ; $E ^ { 3 }$ ; confidence 0.873

258. a130040741.png ; $R ^ { \prime }$ ; confidence 0.873

259. a11028054.png ; $AO ( G )$ ; confidence 0.873

260. a130240408.png ; $y _ { i j k }$ ; confidence 0.873

261. a011600131.png ; $d ( n )$ ; confidence 0.873

262. d030700270.png ; $\Phi ( \alpha ) = \alpha + \sum _ { i = 1 } ^ { \infty } t ^ { i } \phi _ { i } ( \alpha ) , \quad \alpha \in V$ ; confidence 0.873

263. a11015019.png ; $\tau ( S )$ ; confidence 0.873

264. r07764042.png ; $C _ { n } + 1$ ; confidence 0.872

265. a12016053.png ; $N ( . )$ ; confidence 0.872

266. a12006012.png ; $b ( x ) = \sum _ { j = 1 } ^ { m } n _ { j } ( x ) a _ { j } ( x )$ ; confidence 0.872

267. a01300057.png ; $L _ { p } ( E )$ ; confidence 0.872

268. l058590134.png ; $S \cap R ( G ) = ( e )$ ; confidence 0.872

269. d13021013.png ; $G$ ; confidence 0.872

270. j05427061.png ; $\{ a b c \} = ( a b ) c + ( b c ) a - ( c a ) b$ ; confidence 0.872

271. a01055028.png ; $O ( n ) / O ( m )$ ; confidence 0.872

272. a0101209.png ; $P _ { n } ^ { ( k ) } ( \lambda _ { k } ) = 0 , \quad k = 0 , \ldots , n - 1 ; \quad P _ { n } ^ { ( n ) } ( z ) \equiv 1$ ; confidence 0.872

273. a01024049.png ; $\int _ { L } * \phi _ { i }$ ; confidence 0.871

274. a01046071.png ; $P _ { m } ( x , h ) \neq 0$ ; confidence 0.871

275. a130240230.png ; $\psi = \sum _ { i = 1 } ^ { r } d _ { i } \zeta _ { i }$ ; confidence 0.871

276. a11010013.png ; $p _ { U } ( x ) = \operatorname { sup } \{ \mu ( x ) : \mu \in U ^ { \circ } \}$ ; confidence 0.871

277. a01022062.png ; $R ^ { 2 p }$ ; confidence 0.871

278. t1200107.png ; $m = 2 i + 1$ ; confidence 0.871

279. b11033038.png ; $P ^ { \prime }$ ; confidence 0.871

280. i051930181.png ; $Y = C$ ; confidence 0.871

281. s13054032.png ; $x ( \alpha ) = x _ { 12 } ( \alpha )$ ; confidence 0.871

282. a011380155.png ; $x \rightarrow y = x \& y , \quad x \sim y = ( x + y ) + 1$ ; confidence 0.871

283. a011380156.png ; $x + y = ( x \& y ) \vee ( x \& \overline { y } ) , \quad 1 = x \vee x$ ; confidence 0.871

284. a11022092.png ; $f \circ \pi$ ; confidence 0.871

285. q07631018.png ; $i ( c ) = c .1 _ { A }$ ; confidence 0.871

286. a12016071.png ; $d S _ { t } / d u _ { t } = c _ { 1 }$ ; confidence 0.870

287. a120160163.png ; $\sum _ { j = 1 } ^ { M } \sum _ { t = 1 } ^ { T } c _ { j t } x _ { j t } \leq B$ ; confidence 0.870

288. a1302405.png ; $( n \times m )$ ; confidence 0.870

289. s085590458.png ; $= \left\{ \begin{array} { l l } { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } } & { \text { if } \mu = 2 k } \\ { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } ( x + ( k + 1 ) \lambda ) } & { \text { if } \mu = 2 k + 1 } \end{array} \right.$ ; confidence 0.870

290. d03070086.png ; $Y \rightarrow S$ ; confidence 0.870

291. a130240510.png ; $\Theta = E ( Z _ { 12 } )$ ; confidence 0.870

292. a011650499.png ; $A _ { a }$ ; confidence 0.870

293. a12007084.png ; $f \in C ^ { \delta } ( [ 0 , T ] ; X )$ ; confidence 0.870

294. b11069080.png ; $M _ { A g }$ ; confidence 0.870

295. d13018035.png ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870

296. m06557014.png ; $L _ { \cap } \Gamma = 0$ ; confidence 0.870

297. s08735095.png ; $I _ { n } ( \theta ) = n I ( \theta )$ ; confidence 0.870

298. s13004059.png ; $S \supset T$ ; confidence 0.870

299. s130540124.png ; $1 + a b \in R ^ { x }$ ; confidence 0.869

300. a011450154.png ; $M _ { g }$ ; confidence 0.869

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/16. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/16&oldid=43944