User:Maximilian Janisch/latexlist/latex/16
List
1. ; $A G ( 2 , q )$ ; confidence 0.896
2. ; $D = b ^ { 2 } - a c$ ; confidence 0.896
3. ; $f V = V f = p$ ; confidence 0.896
4. ; $g \neq 1$ ; confidence 0.896
5. ; $X$ ; confidence 0.896
6. ; $X \rightarrow X$ ; confidence 0.896
7. ; $Q _ { 0 } = P _ { 0 }$ ; confidence 0.896
8. ; $\overline { \rho } _ { L }$ ; confidence 0.896
9. ; $\operatorname { det } S \neq 0$ ; confidence 0.896
10. ; $g ^ { i j } T _ { i j k } = 0$ ; confidence 0.896
11. ; $F = \{ C : \operatorname { Hom } _ { \Lambda } ( T , C ) = 0 \}$ ; confidence 0.896
12. ; $x \& ( x \vee y ) = x , \quad x \vee ( x \& y ) = x$ ; confidence 0.895
13. ; $SS _ { H }$ ; confidence 0.895
14. ; $V \subseteq \square ^ { \alpha } U$ ; confidence 0.895
15. ; $M \mapsto M ^ { * }$ ; confidence 0.895
16. ; $B$ ; confidence 0.895
17. ; $t$ ; confidence 0.895
18. ; $x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$ ; confidence 0.895
19. ; $\alpha f \in D ^ { \prime } ( O )$ ; confidence 0.895
20. ; $\sum _ { \nu \in A } \| x _ { \nu } \| ^ { 2 } < \infty$ ; confidence 0.895
21. ; $\Gamma ( z ) = \frac { 1 } { e ^ { 2 i \pi z } - 1 } \int _ { L _ { 1 } } \zeta ^ { z - 1 } e ^ { - \zeta } d \zeta$ ; confidence 0.895
22. ; $\phi : U \rightarrow \sum _ { i \in I } U _ { l }$ ; confidence 0.895
23. ; $X \in \Phi$ ; confidence 0.895
24. ; $\Delta ^ { 2 } S _ { n } = \Delta S _ { n + 1 } - \Delta S _ { n } = S _ { n + 2 } - 2 S _ { n + 1 } + S _ { n }$ ; confidence 0.895
25. ; $Q ( x ) = \frac { 1 } { 2 } \langle x , A x \rangle - \langle b , x \rangle$ ; confidence 0.895
26. ; $\Gamma = \operatorname { End } _ { \Lambda } T$ ; confidence 0.895
27. ; $\sigma ^ { 0 } ( m ) / m < \sigma ^ { 0 } ( n ) / n$ ; confidence 0.894
28. ; $\phi ( s ) = \sum _ { n = 1 } ^ { \infty } \alpha _ { n } e ^ { - \lambda _ { n } s } , \quad s = \sigma + i t , \quad \lambda _ { n } > 0$ ; confidence 0.894
29. ; $N > 2$ ; confidence 0.894
30. ; $Y$ ; confidence 0.894
31. ; $x _ { k + 1 } = M ^ { - 1 } ( N x _ { k } + b )$ ; confidence 0.894
32. ; $\exists x A$ ; confidence 0.894
33. ; $\| \xi _ { i j } \|$ ; confidence 0.894
34. ; $m > 1$ ; confidence 0.894
35. ; $K S$ ; confidence 0.893
36. ; $v \in V$ ; confidence 0.893
37. ; $D ^ { \perp }$ ; confidence 0.893
38. ; $f ^ { \prime } ( 1 ) = \prod _ { n > 0 } ( \frac { 1 - q ^ { 2 n } } { 1 + q ^ { 2 n } } ) ^ { 2 }$ ; confidence 0.893
39. ; $[ X _ { i } ^ { + } , X _ { j } ^ { - } ] = 2 \delta _ { i j } h ^ { - 1 } \operatorname { sinh } ( h H _ { i } / 2 )$ ; confidence 0.893
40. ; $p _ { g } = 1$ ; confidence 0.893
41. ; $H _ { K } ^ { p } ( X , F )$ ; confidence 0.893
42. ; $C ^ { k } = \operatorname { Map } ( G ^ { k } , A ) , \quad k = 0,1,2$ ; confidence 0.893
43. ; $K$ ; confidence 0.892
44. ; $q ( x ) \neq 0 \quad \text { for } x \in I , x \neq x _ { 0 } , \quad q ^ { \prime } ( x _ { 0 } ) > 0$ ; confidence 0.892
45. ; $| K _ { V } |$ ; confidence 0.892
46. ; $\eta ^ { \prime }$ ; confidence 0.892
47. ; $\frac { f ^ { \prime } ( L ) } { f ( L ) } < \frac { g ^ { \prime } ( L ; m , s ) } { g ( L ; m , s ) } , \frac { f ^ { \prime } ( R ) } { f ( R ) } < \frac { g ^ { \prime } ( R ; m , s ) } { g ( R ; m , s ) }$ ; confidence 0.892
48. ; $\Omega$ ; confidence 0.892
49. ; $q = p ^ { r }$ ; confidence 0.892
50. ; $L \mapsto E ( L )$ ; confidence 0.892
51. ; $w = z ^ { - \gamma / 2 } ( z - 1 ) ^ { ( \gamma - \alpha - \beta - 1 ) / 2 } u$ ; confidence 0.892
52. ; $\alpha ^ { ( 0 ) }$ ; confidence 0.892
53. ; $\tau \cup A C \cup B C$ ; confidence 0.892
54. ; $J _ { m + n + 1 } ( x ) =$ ; confidence 0.892
55. ; $W ( G )$ ; confidence 0.892
56. ; $\frac { d w } { d z } = P ( z , w )$ ; confidence 0.892
57. ; $n ^ { + }$ ; confidence 0.892
58. ; $\tau _ { 2 } ( m ) = \tau ( m )$ ; confidence 0.892
59. ; $\frac { \partial E } { \partial t } + \frac { \partial F } { \partial l } = 0$ ; confidence 0.892
60. ; $a ( n )$ ; confidence 0.892
61. ; $( G )$ ; confidence 0.892
62. ; $- F ^ { * } ( 0 , y ^ { * } ) \rightarrow \operatorname { sup } , \quad y ^ { * } \in Y ^ { * }$ ; confidence 0.892
63. ; $A \otimes z Q$ ; confidence 0.892
64. ; $k = ( \frac { d ^ { 2 } r } { d s ^ { 2 } } , \frac { d ^ { 3 } r } { d s ^ { 3 } } )$ ; confidence 0.891
65. ; $3$ ; confidence 0.891
66. ; $\partial M _ { A } \subset X \subset M _ { A }$ ; confidence 0.891
67. ; $( x ^ { 2 } / a ^ { 2 } ) + ( y ^ { 2 } / b ^ { 2 } ) = 1$ ; confidence 0.891
68. ; $\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$ ; confidence 0.891
69. ; $\Gamma ( G ) \subset \mathfrak { h }$ ; confidence 0.891
70. ; $X = M / \Gamma$ ; confidence 0.891
71. ; $L ( t , x , D _ { x } )$ ; confidence 0.891
72. ; $\{ f _ { n } \}$ ; confidence 0.891
73. ; $n = k - \lambda$ ; confidence 0.891
74. ; $A$ ; confidence 0.891
75. ; $\Delta ( \alpha ) = \alpha \otimes 1 + 1 \otimes \alpha$ ; confidence 0.891
76. ; $3 ^ { 3 } .5 .79$ ; confidence 0.891
77. ; $y _ { j } \theta$ ; confidence 0.890
78. ; $u \in C ( [ 0 , T ] ; H ^ { 2 } ( \Omega ) ) \cap C ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.890
79. ; $( g ) Y = g Y g ^ { - 1 } , ( \text { ad } X ) Y = X Y - Y X$ ; confidence 0.890
80. ; $\tau \in P _ { \mu } / \Pi$ ; confidence 0.890
81. ; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$ ; confidence 0.890
82. ; $\operatorname { dim } \mathfrak { g } = n ( 2 n - 1 )$ ; confidence 0.890
83. ; $( A , m , e )$ ; confidence 0.889
84. ; $R \simeq K Q / I$ ; confidence 0.889
85. ; $( G )$ ; confidence 0.889
86. ; $i , j \in \omega$ ; confidence 0.889
87. ; $\pi$ ; confidence 0.889
88. ; $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q )$ ; confidence 0.889
89. ; $i$ ; confidence 0.889
90. ; $f _ { 1 } = \ldots = f _ { m }$ ; confidence 0.889
91. ; $\square ^ { 2 } F _ { 4 } ( q ) ^ { \prime }$ ; confidence 0.889
92. ; $x y \in E ( D )$ ; confidence 0.889
93. ; $( x ^ { \prime } , y ^ { \prime } ) \in J$ ; confidence 0.889
94. ; $F = G _ { 0 } \subset G _ { 1 } \subset \ldots$ ; confidence 0.888
95. ; $\omega ^ { * } \overline { \pi }$ ; confidence 0.888
96. ; $\lambda \in S _ { \theta _ { 0 } } , \quad t , s \in [ 0 , T ]$ ; confidence 0.888
97. ; $a ^ { 1 / n }$ ; confidence 0.888
98. ; $\{ a , b \} = 1$ ; confidence 0.888
99. ; $\| A \| = 10 ^ { 5 }$ ; confidence 0.887
100. ; $A \oplus B$ ; confidence 0.887
101. ; $u , v , u v \in U _ { 2 }$ ; confidence 0.887
102. ; $C _ { 3 }$ ; confidence 0.887
103. ; $b ( t ) = \int _ { 0 } ^ { + \infty } \beta ( \alpha ) p ( \alpha , t ) d \alpha$ ; confidence 0.887
104. ; $R < \infty$ ; confidence 0.887
105. ; $C _ { 1 } \frac { u ( t _ { n } + 1 ) - u ( t _ { n } ) } { \tau _ { n } } = f - A u ( t _ { n } )$ ; confidence 0.887
106. ; $x ^ { 3 } + y ^ { 3 } - 3 a x y = 0$ ; confidence 0.887
107. ; $- \frac { \partial D } { \partial t } + \operatorname { rot } H = J$ ; confidence 0.887
108. ; $\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$ ; confidence 0.887
109. ; $E \theta ( t ) \theta ( t + u ) = \int _ { 0 } F ( t + u - v ) ( 1 - G ( t - v ) ) d m ( v )$ ; confidence 0.887
110. ; $\tau _ { j } < 0$ ; confidence 0.887
111. ; $A ^ { * } \sigma A = \sigma$ ; confidence 0.887
112. ; $\Omega \subset R ^ { m }$ ; confidence 0.887
113. ; $M = P ^ { 1 } ( C )$ ; confidence 0.887
114. ; $X ( a ) = 0$ ; confidence 0.887
115. ; $d \equiv \square _ { \Phi } h \Leftrightarrow \{ \alpha \in \Lambda : d ( \alpha ) = h ( \alpha ) \} \in \Phi \quad ( d , h \in D )$ ; confidence 0.886
116. ; $\phi : M ( pt ) \rightarrow h _ { M } ( pt )$ ; confidence 0.886
117. ; $( i i + 1 )$ ; confidence 0.886
118. ; $\pi _ { 1 } ( M ) \neq Z _ { 2 }$ ; confidence 0.886
119. ; $P _ { n } ( R )$ ; confidence 0.886
120. ; $n \geq 12$ ; confidence 0.886
121. ; $N ^ { * } = \operatorname { card } ( U _ { n } ^ { * } ) / p$ ; confidence 0.886
122. ; $x z \in E ( D )$ ; confidence 0.886
123. ; $A _ { i } = \{ a _ { i } \}$ ; confidence 0.886
124. ; $\operatorname { Re } ( z e ^ { - i \phi } ) > c$ ; confidence 0.886
125. ; $x \& ( y \vee z ) = ( x \& y ) \vee ( x \& z )$ ; confidence 0.886
126. ; $( t _ { j } )$ ; confidence 0.885
127. ; $\alpha \in \Lambda$ ; confidence 0.885
128. ; $\int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ]$ ; confidence 0.885
129. ; $5$ ; confidence 0.885
130. ; $t \subset v$ ; confidence 0.885
131. ; $L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$ ; confidence 0.885
132. ; $y \rightarrow \gamma x + \delta y$ ; confidence 0.885
133. ; $2$ ; confidence 0.885
134. ; $\alpha ( t )$ ; confidence 0.885
135. ; $R ^ { 23 } = \sum _ { i } 1 \otimes x _ { i } \otimes y _ { i }$ ; confidence 0.885
136. ; $u _ { A }$ ; confidence 0.885
137. ; $V \rightarrow V ^ { \prime }$ ; confidence 0.885
138. ; $B \circ \Pi$ ; confidence 0.885
139. ; $u ( 0 ) = u _ { 0 }$ ; confidence 0.885
140. ; $\gamma _ { i j }$ ; confidence 0.884
141. ; $y _ { j } ( x ) = Y _ { j } ( x ) [ 1 + O ( \frac { 1 } { \lambda } ) ] , \quad a \leq x \leq x _ { 0 } , \quad j = 0,1$ ; confidence 0.884
142. ; $\Gamma = B X$ ; confidence 0.884
143. ; $MS _ { e }$ ; confidence 0.884
144. ; $C \rho _ { p } C ^ { \prime }$ ; confidence 0.884
145. ; $T ( M )$ ; confidence 0.884
146. ; $G = Z _ { p }$ ; confidence 0.884
147. ; $\int _ { t _ { 0 } } ^ { t _ { 1 } } [ \overline { \xi } l ( y ) - \overline { l ^ { * } ( \xi ) } y ] d t = 0$ ; confidence 0.884
148. ; $t \mapsto T ^ { * } ( t ) x ^ { * } \text { is strongly continuous on } [ 0 , \infty ) \}$ ; confidence 0.884
149. ; $F \supset F _ { 0 }$ ; confidence 0.883
150. ; $\alpha _ { \gamma } ( \gamma _ { 0 } ( T ) ) = \gamma ( T )$ ; confidence 0.883
151. ; $m < n ^ { ( 1 / 3 ) - \delta }$ ; confidence 0.883
152. ; $H _ { n - 2 }$ ; confidence 0.883
153. ; $K _ { 0 } > 1$ ; confidence 0.883
154. ; $\leq k ( T ) _ { 1 \leq r \leq m - 1,1 \leq i \leq p } \frac { | f ^ { ( r ) } ( \lambda _ { i } ) - g ^ { ( r ) } ( \lambda _ { i } ) | } { r ! } m _ { i }$ ; confidence 0.883
155. ; $i = 0,1$ ; confidence 0.883
156. ; $( S _ { n } )$ ; confidence 0.882
157. ; $\pi _ { i } ( M ) = 0$ ; confidence 0.882
158. ; $\operatorname { PLG } ( N , k )$ ; confidence 0.882
159. ; $U _ { a }$ ; confidence 0.882
160. ; $e ^ { x _ { i } } - 1$ ; confidence 0.882
161. ; $\Gamma ( C ) = V$ ; confidence 0.882
162. ; $K ( T M ^ { g } ) \otimes C \rightarrow C$ ; confidence 0.882
163. ; $\epsilon$ ; confidence 0.882
164. ; $\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$ ; confidence 0.882
165. ; $R ^ { 13 } = \sum _ { i } x _ { i } \otimes 1 \otimes y _ { i }$ ; confidence 0.882
166. ; $\sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } a _ { n } z ^ { - 3 n / 2 } \quad \text { for } | \operatorname { arg } z | \leq \pi - \epsilon$ ; confidence 0.882
167. ; $A , B \in K$ ; confidence 0.882
168. ; $4$ ; confidence 0.882
169. ; $[ \alpha , \mathfrak { g } - 1 ] = 0$ ; confidence 0.882
170. ; $\mathfrak { n } ^ { + } = \sum _ { \alpha \in \Phi ^ { + } } \mathfrak { g } _ { \alpha }$ ; confidence 0.882
171. ; $y = \sum _ { i \geq n } a _ { i } t$ ; confidence 0.881
172. ; $90 = g$ ; confidence 0.881
173. ; $t = r = d = 0$ ; confidence 0.881
174. ; $S _ { E } = \{ \omega \in \hat { G } : E + \omega \subseteq E \}$ ; confidence 0.881
175. ; $F _ { + } ( x + i 0 ) - F _ { - } ( x - i 0 )$ ; confidence 0.881
176. ; $y _ { 2 } = ( x _ { 1 } + x _ { 3 } ) ( x _ { 2 } + x _ { 4 } )$ ; confidence 0.881
177. ; $t _ { \lambda } ^ { \prime }$ ; confidence 0.881
178. ; $\operatorname { dim } \mathfrak { g } = n ( n + 2 )$ ; confidence 0.881
179. ; $r$ ; confidence 0.881
180. ; $p _ { j } \geq 0$ ; confidence 0.881
181. ; $i , j = 1,2$ ; confidence 0.881
182. ; $S : A \rightarrow A \otimes A$ ; confidence 0.881
183. ; $M _ { K } = K \otimes _ { Z } M$ ; confidence 0.880
184. ; $A \cup \{ O \}$ ; confidence 0.880
185. ; $F _ { q }$ ; confidence 0.880
186. ; $\nabla _ { Y } ( f X ) = ( Y f ) X + f \nabla _ { Y } X , \quad \nabla _ { f } Y X = f \nabla _ { Y } X$ ; confidence 0.880
187. ; $P K$ ; confidence 0.879
188. ; $\langle y _ { 1 } - y _ { 2 } , x _ { 1 } - x _ { 2 } \rangle \geq 0$ ; confidence 0.879
189. ; $945 = 3 ^ { 3 } .5 .7$ ; confidence 0.879
190. ; $w _ { N } ( \alpha ) \geq n$ ; confidence 0.879
191. ; $F \equiv \operatorname { grad } \phi$ ; confidence 0.879
192. ; $H ^ { * } ( G , K )$ ; confidence 0.879
193. ; $| I | = \operatorname { card } ( R / I )$ ; confidence 0.879
194. ; $0 \leq \frac { 2 ( \chi , \alpha ) } { ( \alpha , \alpha ) } < p \quad \text { for all } \alpha \in \Delta$ ; confidence 0.879
195. ; $r$ ; confidence 0.879
196. ; $X _ { \delta }$ ; confidence 0.879
197. ; $P _ { q }$ ; confidence 0.879
198. ; $X = \operatorname { Spec } A$ ; confidence 0.879
199. ; $\psi _ { n + 1 } = \text { const, } \quad \omega _ { n + 1 } = \alpha \frac { \partial \psi _ { n } } { \partial n } + \omega _ { n }$ ; confidence 0.879
200. ; $T ^ { * }$ ; confidence 0.878
201. ; $N \nu = 1$ ; confidence 0.878
202. ; $X : G \rightarrow R$ ; confidence 0.878
203. ; $\omega ^ { k } = d x ^ { k }$ ; confidence 0.878
204. ; $\alpha _ { i } < b _ { i }$ ; confidence 0.878
205. ; $H \phi$ ; confidence 0.878
206. ; $Q _ { 1 } \cup \square \ldots \cup Q _ { m }$ ; confidence 0.878
207. ; $\forall x _ { i } \in D ( A )$ ; confidence 0.878
208. ; $( \text { id } \otimes \Delta ) ( R ) = R ^ { 13 } R ^ { 12 }$ ; confidence 0.878
209. ; $T ^ { \# } ( n )$ ; confidence 0.878
210. ; $x = \lambda ( \theta ) , y = \Delta ( \theta )$ ; confidence 0.878
211. ; $E ^ { * }$ ; confidence 0.878
212. ; $K ^ { \prime }$ ; confidence 0.878
213. ; $C ^ { 2 } : 1 E$ ; confidence 0.878
214. ; $p _ { g } = 0$ ; confidence 0.877
215. ; $x \rightarrow - \infty$ ; confidence 0.877
216. ; $Z _ { q } ( y ) = \sum _ { n = 0 } ^ { \infty } q ^ { n } y ^ { n } = ( 1 - q y ) ^ { - 1 }$ ; confidence 0.877
217. ; $( \frac { K / k } { \mathfrak { p } } ) )$ ; confidence 0.877
218. ; $N ( n , R )$ ; confidence 0.877
219. ; $| w | < 1 / 16$ ; confidence 0.877
220. ; $e _ { \lambda } ^ { 1 } \in X$ ; confidence 0.877
221. ; $B O$ ; confidence 0.877
222. ; $d j \neq 0$ ; confidence 0.877
223. ; $3$ ; confidence 0.876
224. ; $: C ( K ) \rightarrow L _ { p } ( K , \mu )$ ; confidence 0.876
225. ; $R [ F ( t ) ] = ( 1 - t ^ { 2 } ) F ^ { \prime \prime } - ( 2 \rho - 1 ) t F ^ { \prime \prime }$ ; confidence 0.876
226. ; $z = z 0$ ; confidence 0.876
227. ; $N = \{ X \in \mathfrak { g } :$ ; confidence 0.876
228. ; $y = 0$ ; confidence 0.876
229. ; $| x ( t ) \| \leq c \| x _ { 0 } \| \text { for all } t \in [ 0 , \tau ]$ ; confidence 0.875
230. ; $p 3$ ; confidence 0.875
231. ; $f _ { 1 } ^ { \prime } ( x ) , \ldots , f _ { k } ^ { \prime } ( x )$ ; confidence 0.875
232. ; $n \times 1$ ; confidence 0.875
233. ; $Z _ { g } = \Gamma _ { 1 } / \Gamma _ { 0 }$ ; confidence 0.875
234. ; $f ( X )$ ; confidence 0.875
235. ; $p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$ ; confidence 0.875
236. ; $( K / k )$ ; confidence 0.875
237. ; $z _ { k } \in L$ ; confidence 0.875
238. ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875
239. ; $\tau = \{ t _ { i } \} _ { i = 0 } ^ { i = n }$ ; confidence 0.875
240. ; $\operatorname { inv } ( x )$ ; confidence 0.875
241. ; $g _ { n } ( \Omega )$ ; confidence 0.875
242. ; $H _ { 2 } ( V , Z )$ ; confidence 0.875
243. ; $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$ ; confidence 0.875
244. ; $R ^ { N }$ ; confidence 0.875
245. ; $f _ { 0 } ( z )$ ; confidence 0.874
246. ; $m$ ; confidence 0.874
247. ; $c = 0$ ; confidence 0.874
248. ; $| w | = \rho < 1$ ; confidence 0.874
249. ; $p = - \infty$ ; confidence 0.874
250. ; $J = I + \epsilon \omega ^ { \prime } x v / \omega ^ { 2 }$ ; confidence 0.874
251. ; $m > 2$ ; confidence 0.874
252. ; $h ; G \rightarrow A$ ; confidence 0.874
253. ; $\epsilon \neq 0$ ; confidence 0.874
254. ; $D _ { n }$ ; confidence 0.874
255. ; $f ( \alpha + h ) = \sum _ { n = 0 } ^ { \infty } P _ { n } ( h )$ ; confidence 0.873
256. ; $\phi _ { \alpha } ( \alpha ) \neq 0$ ; confidence 0.873
257. ; $E ^ { 3 }$ ; confidence 0.873
258. ; $R ^ { \prime }$ ; confidence 0.873
259. ; $AO ( G )$ ; confidence 0.873
260. ; $y _ { i j k }$ ; confidence 0.873
261. ; $d ( n )$ ; confidence 0.873
262. ; $\Phi ( \alpha ) = \alpha + \sum _ { i = 1 } ^ { \infty } t ^ { i } \phi _ { i } ( \alpha ) , \quad \alpha \in V$ ; confidence 0.873
263. ; $\tau ( S )$ ; confidence 0.873
264. ; $C _ { n } + 1$ ; confidence 0.872
265. ; $N ( . )$ ; confidence 0.872
266. ; $b ( x ) = \sum _ { j = 1 } ^ { m } n _ { j } ( x ) a _ { j } ( x )$ ; confidence 0.872
267. ; $L _ { p } ( E )$ ; confidence 0.872
268. ; $S \cap R ( G ) = ( e )$ ; confidence 0.872
269. ; $G$ ; confidence 0.872
270. ; $\{ a b c \} = ( a b ) c + ( b c ) a - ( c a ) b$ ; confidence 0.872
271. ; $O ( n ) / O ( m )$ ; confidence 0.872
272. ; $P _ { n } ^ { ( k ) } ( \lambda _ { k } ) = 0 , \quad k = 0 , \ldots , n - 1 ; \quad P _ { n } ^ { ( n ) } ( z ) \equiv 1$ ; confidence 0.872
273. ; $\int _ { L } * \phi _ { i }$ ; confidence 0.871
274. ; $P _ { m } ( x , h ) \neq 0$ ; confidence 0.871
275. ; $\psi = \sum _ { i = 1 } ^ { r } d _ { i } \zeta _ { i }$ ; confidence 0.871
276. ; $p _ { U } ( x ) = \operatorname { sup } \{ \mu ( x ) : \mu \in U ^ { \circ } \}$ ; confidence 0.871
277. ; $R ^ { 2 p }$ ; confidence 0.871
278. ; $m = 2 i + 1$ ; confidence 0.871
279. ; $P ^ { \prime }$ ; confidence 0.871
280. ; $Y = C$ ; confidence 0.871
281. ; $x ( \alpha ) = x _ { 12 } ( \alpha )$ ; confidence 0.871
282. ; $x \rightarrow y = x \& y , \quad x \sim y = ( x + y ) + 1$ ; confidence 0.871
283. ; $x + y = ( x \& y ) \vee ( x \& \overline { y } ) , \quad 1 = x \vee x$ ; confidence 0.871
284. ; $f \circ \pi$ ; confidence 0.871
285. ; $i ( c ) = c .1 _ { A }$ ; confidence 0.871
286. ; $d S _ { t } / d u _ { t } = c _ { 1 }$ ; confidence 0.870
287. ; $\sum _ { j = 1 } ^ { M } \sum _ { t = 1 } ^ { T } c _ { j t } x _ { j t } \leq B$ ; confidence 0.870
288. ; $( n \times m )$ ; confidence 0.870
289. ; $= \left\{ \begin{array} { l l } { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } } & { \text { if } \mu = 2 k } \\ { ( x + \lambda ) ^ { 2 } \ldots ( x + k \lambda ) ^ { 2 } ( x + ( k + 1 ) \lambda ) } & { \text { if } \mu = 2 k + 1 } \end{array} \right.$ ; confidence 0.870
290. ; $Y \rightarrow S$ ; confidence 0.870
291. ; $\Theta = E ( Z _ { 12 } )$ ; confidence 0.870
292. ; $A _ { a }$ ; confidence 0.870
293. ; $f \in C ^ { \delta } ( [ 0 , T ] ; X )$ ; confidence 0.870
294. ; $M _ { A g }$ ; confidence 0.870
295. ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870
296. ; $L _ { \cap } \Gamma = 0$ ; confidence 0.870
297. ; $I _ { n } ( \theta ) = n I ( \theta )$ ; confidence 0.870
298. ; $S \supset T$ ; confidence 0.870
299. ; $1 + a b \in R ^ { x }$ ; confidence 0.869
300. ; $M _ { g }$ ; confidence 0.869
Maximilian Janisch/latexlist/latex/16. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/16&oldid=43944