Talk:Discontinuity point
From Encyclopedia of Mathematics
Hello Paolini (Emanuele?). Some tips:
- If you add
{{TEX|done}}
then the page will show here Category:TeX done, which helps us keeping track of progresses in the texxification.
- If you add
{{MSC|nnXnn}}
the the page will link to the corresponding MSC classification and will be also "mathematically categorized" (see for instance Category:Analysis)
- We adopt some standard form for the references. Here in example, taken from Cauchy-Lipschitz theorem
====References====
{|
|-
|valign="top"|{{Ref|Am}}|| H. Amann, "Ordinary differential equations. An introduction to
nonlinear analysis." de Gruyter Studies in Mathematics, 13. Walter de Gruyter & Co., Berlin, 1990.
|-
|valign="top"|{{Ref|Ha}}|| P. Hartman, "Ordinary differential equations" , Birkhäuser (1982)
|-
|valign="top"|{{Ref|Li}}|| E. Lindelöf, "Sur l'application de la méthode des approximations
successives aux équations différentielles ordinaires du premier ordre", ''Comptes rendus hebdomadaires
des séances de l'Académie des sciences'' '''116''' (1894) pp. 454–457.
|-
|valign="top"|{{Ref|Pet}}|| I.G. Petrovskii, "Ordinary differential equations" , Prentice-Hall
(1966) (Translated from Russian)
|-
|}
How to Cite This Entry:
Discontinuity point. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Discontinuity_point&oldid=30831
Discontinuity point. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Discontinuity_point&oldid=30831