# Poly-nilpotent group

A group possessing a finite normal series with nilpotent factors; such a series is called poly-nilpotent. The length of the shortest poly-nilpotent series of a poly-nilpotent group is called its poly-nilpotent length. The class of all poly-nilpotent groups coincides with the class of all solvable groups (cf. Solvable group); however, in general the poly-nilpotent length is less than the solvable length. A poly-nilpotent group of length 2 is called meta-nilpotent.

All groups having (an increasing) poly-nilpotent series of length $l$ whose factors in increasing order have nilpotent classes not exceeding the numbers $c_1,\dots,c_l$, respectively, form a variety $\mathfrak M$, which is the product of nilpotent varieties:

$$\mathfrak M=\mathfrak N_{c_1}\dots\mathfrak N_{c_l}$$

(see Variety of groups). The free groups of such a variety are called free poly-nilpotent groups. Of particular interest are the varieties $\mathfrak N_c\mathfrak A$ and $\mathfrak A\mathfrak N_c$. The first of them contains all connected solvable Lie groups; in the second, all finitely-generated groups are finitely approximable and satisfy the maximum condition for normal subgroups.

#### References

[1] | A.G. Kurosh, "The theory of groups" , 1–2 , Chelsea (1960) (Translated from Russian) |

[2] | H. Neumann, "Varieties of groups" , Springer (1967) |

**How to Cite This Entry:**

Meta-nilpotent group.

*Encyclopedia of Mathematics.*URL: http://encyclopediaofmath.org/index.php?title=Meta-nilpotent_group&oldid=51097