Gauss-Lucas theorem
From Encyclopedia of Mathematics
(Redirected from Gauss–Lucas theorem)
Gauss theorem
Let $f(z)$ be a complex polynomial, i.e., $f(z)\in\mathbf C[z]$. Then the zeros of the derivative $f'(z)$ are inside the convex polygon spanned by the zeros of $f(z)$.
References
[a1] | E. Hille, "Analytic function theory" , 1 , Chelsea, reprint (1982) pp. 84 |
[a2] | P. Henrici, "Applied and computational complex analysis" , I , Wiley, reprint (1988) pp. 463ff |
[a3] | B.J. Lewin, "Nullstellenverteilung ganzer Funktionen" , Akademie Verlag (1962) pp. 355 |
How to Cite This Entry:
Gauss–Lucas theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gauss%E2%80%93Lucas_theorem&oldid=22496
Gauss–Lucas theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gauss%E2%80%93Lucas_theorem&oldid=22496