Namespaces
Variants
Actions

Difference between revisions of "User:Luca.Spolaor/sandbox"

From Encyclopedia of Mathematics
Jump to: navigation, search
Line 18: Line 18:
  
 
We can also define almost everywhere the tangent plane to a varifold by setting $T_xV:=T_xM$ at each point $x\in {\rm spt}(V)$ where the tangent plane to $M$ exists (see [[Rectifiable set]], Proposition 7).
 
We can also define almost everywhere the tangent plane to a varifold by setting $T_xV:=T_xM$ at each point $x\in {\rm spt}(V)$ where the tangent plane to $M$ exists (see [[Rectifiable set]], Proposition 7).
 +
 +
The following are standard construction of Geometric Measure Theory:
 +
\begin{itemize}
 +
\item
 +
\end{itemize}
  
 
==First Variation and Stationariety==
 
==First Variation and Stationariety==

Revision as of 10:22, 11 September 2012

2020 Mathematics Subject Classification: Primary: 49Q15 [MSN][ZBL]


Rectifiable varifolds are a generalization of rectifiable sets in the sense that they allow for a density function to be defined on the set. They are also strictly connected to rectifiable currents, in fact to such a current one can always associate a varifold by putting aside the orientation.

Definitions

Definition 1 Let $U \subset \mathbb R^n$. A Rectifiable varifold $V$ of dimension $m$ in $U$ is a couple $(M, \theta)$, where $M\subset U$ is an $m$-dimensional Rectifiable set and $\theta\colon M \to \mathbb R_+$ is a $\mathcal H^m$ measurable function, called density function. A varifold is called integral rectifiable if $\theta$ is integer valued.


To a varifold we can naturally associate a measure defined and denoted by $$\mu_V(A):=\int_{M\cap A} \theta \,d\mathcal H^m,\quad \text{for every Borel set } A\subset \mathbb R^n.$$ The mass of the varifold is defined by ${\bf M}(V):=\mu_V(U)$. The support of a varifold is defined by ${\rm spt}(V):={\rm spt}(\mu_V)$.

We can also define almost everywhere the tangent plane to a varifold by setting $T_xV:=T_xM$ at each point $x\in {\rm spt}(V)$ where the tangent plane to $M$ exists (see Rectifiable set, Proposition 7).

The following are standard construction of Geometric Measure Theory: \begin{itemize} \item \end{itemize}

First Variation and Stationariety

Allard's Regularity Theorem

References

[Sim] Leon Simon, "Lectures on Geometric Measure Theory". Proceedings of the centre for Mathematical Analysis. Australian National University, Canberra, 1983. MR0756417Zbl 0546.49019
[FX] Lin Fanghua, Yang Xiaoping, "Geometric Measure Theory-An Introduction". Advanced Mathematics Vol.1. International Press, Boston, 2002. MR2030862Zbl 1074.49011
How to Cite This Entry:
Luca.Spolaor/sandbox. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Luca.Spolaor/sandbox&oldid=27899