Namespaces
Variants
Actions

Thomas-Fermi theory

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Fermi–Thomas theory

Sometimes called the "statistical theory" , it was invented by L.H. Thomas [a13] and E. Fermi [a2], shortly after E. Schrödinger invented his quantum-mechanical wave equation, in order to approximately describe the electron density, $\rho ( x )$, $x \in \mathbf{R} ^ { 3 }$, and the ground state energy, $E ( N )$ for a large atom or molecule with a large number, $N$, of electrons. Schrödinger's equation, which would give the exact density and energy, cannot be easily handled when $N$ is large (cf. also Schrödinger equation).

A starting point for the theory is the Thomas–Fermi energy functional. For a molecule with $K$ nuclei of charges $Z_i > 0$ and locations $R_{i} \in \mathbf{R} ^ { 3 }$ ($i = 1 , \ldots , K$), it is \begin{equation} \tag{a1} \mathcal{E} ( \rho ) : = \frac { 3 } { 5 } \gamma \int _ { \mathbf R ^ { 3 } } \rho ( x ) ^ { 5 / 3 } d x - \int _ { \mathbf R ^ { 3 } } V ( x ) \rho ( x ) d x +\frac { 1 } { 2 } \int _ { {\bf R} ^ { 3 } } \int _ { {\bf R} ^ { 3 } } \frac { \rho ( x ) \rho ( y ) } { | x - y | } d x d y + U \end{equation} in suitable units. Here, \begin{equation*} V ( x ) = \sum _ { j = 1 } ^ { K } Z _ { j } | x - r _ { j } | ^ { - 1 }, \end{equation*} \begin{equation*} U = \sum _ { 1 \leq i < j \leq K } Z _ { i } Z _ { j } | R _ { i } - R _ { j } | ^ { - 1 }, \end{equation*} and $\gamma = ( 3 \pi ^ { 2 } ) ^ { 2 / 3 }$.

The constraint on $\rho$ is $\rho ( x ) \geq 0$ and $\int _ { \mathbf{R} ^ { 3 } } \rho = N$.

The functional $\rho \rightarrow \mathcal{E} ( \rho )$ is convex (cf. also Convex function (of a real variable)).

The justification for this functional is this: The first term is roughly the minimum quantum-mechanical kinetic energy of $N$ electrons needed to produce an electron density $\rho$.

The second term is the attractive interaction of the $N$ electrons with the $K$ nuclei, via the Coulomb potential $V$.

The third is approximately the electron-electron repulsive energy. $U$ is the nuclear-nuclear repulsion and is an important constant.

The Thomas–Fermi energy is defined to be \begin{equation*} E ^ { \text{TF} } ( N ) = \operatorname { inf } \{ \mathcal{E} ( \rho ) : \rho \in L ^ { 5 / 3 } , \int \rho = N , \rho \geq 0 \}, \end{equation*} i.e., the Thomas–Fermi energy and density are obtained by minimizing ${\cal E} ( \rho )$ with $\rho \in L ^ { 5 / 3 } ( \mathbf{R} ^ { 3 } )$ and $\int \rho = N$.

The Euler–Lagrange equation, in this case called the Thomas–Fermi equation, is \begin{equation} \tag{a2} \gamma \rho ( x ) ^ { 2 / 3 } = [ \Phi ( x ) - \mu ]_+ , \end{equation} where $[ a ] + = \operatorname { max } \{ 0 , a \}$, $\mu$ is some constant (a Lagrange multiplier; cf. Lagrange multipliers) and $\Phi$ is the Thomas–Fermi potential:

\begin{equation} \tag{a3} \Phi ( x ) = V ( x ) - \int _ { \mathbf{R} ^ { 3 } } | x - y | ^ { - 1 } \rho ( y ) d y. \end{equation}

The following essential mathematical facts about the Thomas–Fermi equation were established by E.H. Lieb and B. Simon [a7] (cf. also [a3]):

1) There is a density $\rho _ { N } ^ { \operatorname {TF} }$ that minimizes ${\cal E} ( \rho )$ if and only if $N \leq Z : = \sum _ { j = 1 } ^ { K } Z _ { j }$. This $\rho _ { N } ^ { \operatorname {TF} }$ is unique and it satisfies the Thomas–Fermi equation (a2) for some $\mu \geq 0$. Every positive solution, $\rho$, of (a2) is a minimizer of (a1) for $N = \int \rho$. If $N > Z$, then $E ^ { \text{TF} } ( N ) = E ^ { \text{TF} } ( Z )$ and any minimizing sequence converges weakly in $L ^ { 5 / 3 } ( \mathbf{R} ^ { 3 } )$ to $\rho ^ { \operatorname {TF} } _{ Z }$.

2) $\Phi ( x ) \geq 0$ for all $x$. (This need not be so for the real Schrödinger $\rho$.)

3) $\mu = \mu ( N )$ is a strictly monotonically decreasing function of $N$ and $\mu ( Z ) = 0$ (the neutral case). $\mu$ is the chemical potential, namely \begin{equation*} \mu ( N ) = - \frac { \partial E ^ { \text{TF} } ( N ) } { \partial N }. \end{equation*} $E ^ { \text{TF} } ( N )$ is a strictly convex, decreasing function of $N$ for $N \leq Z$ and $E ^ { \text{TF} } ( N ) = E ^ { \text{TF} } ( Z )$ for $N \geq Z$. If $N < Z$, $\rho _ { N } ^ { \operatorname {TF} }$ has compact support. When $N = Z$, (a2) becomes $\gamma \rho ^ { 2 / 3 } = \Phi$. By applying the Laplace operator $\Delta$ to both sides, one obtains

\begin{equation*} - \Delta \Phi ( x ) + 4 \pi \gamma ^ { - 3 / 2 } \Phi ( x ) ^ { 3 / 2 } = 4 \pi \sum _ { j = 1 } ^ { K } Z _ { j } \delta ( x - R _ { j } ), \end{equation*}

which is the form in which the Thomas–Fermi equation is usually stated (but it is valid only for $N = Z$). An important property of the solution is Teller's theorem [a4] (proved rigorously in [a7]), which implies that the Thomas–Fermi molecule is always unstable, i.e., for each $N \leq Z$ there are $K$ numbers $N _ { j } \in ( 0 , Z _ { j } )$ with $\sum _ { j } N _ { j } = N$ such that

\begin{equation} \tag{a4} E ^ { \operatorname{TF} } ( N ) > \sum _ { j = 1 } ^ { K } E _ { \operatorname{atom} } ^ { \operatorname{TF} } ( N _ { j } , Z _ { j } ), \end{equation}

where $E _ { \operatorname{atom} } ^ { \operatorname{TF} } ( N _ { j } , Z _ { j } )$ is the Thomas–Fermi energy with $K = 1$, $Z = Z_j$ and $N = N_{j}$. The presence of $U$ in (a1) is crucial for this result. The inequality is strict. Not only does $E ^ { \text{TF} }$ decrease when the nuclei are pulled infinitely far apart (which is what (a4) says) but any dilation of the nuclear coordinates ($R _ { j } \rightarrow \text{l}R _ { j }$, $\text{l} > 1$) will decrease $E ^ { \text{TF} }$ in the neutral case (positivity of the pressure) [a3], [a1]. This theorem plays an important role in the stability of matter. An important question concerns the connection between $E ^ { \text{TF} } ( N )$ and $E ^ { \text{Q} } ( N )$, the ground state energy (i.e., the infimum of the spectrum) of the Schrödinger operator, $H$, it was meant to approximate.

\begin{equation*} H = - \sum _ { i = 1 } ^ { N } [ \Delta _ { i } + V ( x _ { i } ) ] + \sum _ { 1 \leq i < j \leq N } | x _ { i } - x _ { j } | ^ { - 1 } + U, \end{equation*}

which acts on the anti-symmetric functions $\wedge ^ { N } L ^ { 2 } ( \mathbf{R} ^ { 3 } ; \mathbf{C} ^ { 2 } )$ (i.e., functions of space and spin). It used to be believed that $E ^ { \text{TF} }$ is asymptotically exact as $N \rightarrow \infty$, but this is not quite right; $Z \rightarrow \infty$ is also needed. Lieb and Simon [a7] proved that if one fixes $K$ and $Z _ { j } / Z$ and sets $R _ { j } = Z ^ { - 1 / 3 } R _ { j } ^ { 0 }$, with fixed $R _ { j } ^ { 0 } \in \mathbf{R} ^ { 3 }$, and sets $N = \lambda Z$, with $0 \leq \lambda < 1$, then

\begin{equation} \tag{a5} \operatorname { lim } _ { Z \rightarrow \infty } \frac { E ^ { \text{TF} } ( \lambda Z ) } { E ^ { \text{Q} } ( \lambda Z ) } = 1. \end{equation}

In particular, a simple change of variables shows that $E _ { \text{atom} } ^ { \text{TF} } ( \lambda , Z ) = Z ^ { 7 / 3 } E _ { \text{atom} } ^ { \text{TF} } ( \lambda , 1 )$ and hence the true energy of a large atom is asymptotically proportional to $Z ^ { 7 / 3 }$.

Likewise, there is a well-defined sense in which the quantum-mechanical density converges to $\rho _ { N } ^ { \operatorname {TF} }$ (cf. [a7]). The Thomas–Fermi density for an atom located at $R = 0$, which is spherically symmetric, scales as

\begin{equation*} \rho _ { \text { atom } } ^ { \text {TF} } ( x ; N = \lambda Z , Z ) = \end{equation*}

\begin{equation*} = Z ^ { 2 } \rho _ { \text { atom } } ^ { \operatorname{TF} } ( Z ^ { 1 / 3 } x ; N = \lambda , Z = 1 ). \end{equation*}

Thus, a large atom (i.e., large $Z$) is smaller than a $Z = 1$ atom by a factor $Z ^ { - 1 / 3 }$ in radius. Despite this seeming paradox, Thomas–Fermi theory gives the correct electron density in a real atom (so far as the bulk of the electrons is concerned) as $Z \rightarrow \infty$.

Another important fact is the large-$| x |$ asymptotics of $\rho _ { \text { atom } } ^ { \text{TF} }$ for a neutral atom. As $| x | \rightarrow \infty$, \begin{equation*} \rho _ { \text{atom} } ^ { \text{TF} } ( x , N = Z , Z ) \sim \gamma ^ { 3 } \left( \frac { 3 } { \pi } \right) ^ { 3 } | x | ^ { - 6 }, \end{equation*} independent of $Z$.

Again, this behaviour agrees with quantum mechanics — on a length scale $Z ^ { - 1 / 3 }$, which is where the bulk of the electrons is to be found.

In light of the limit theorem (a5), Teller's theorem can be understood as saying that, as $Z \rightarrow \infty$, the quantum-mechanical binding energy of a molecule is of lower order in $Z$ than the total ground state energy. Thus, Teller's theorem is not a defect of Thomas–Fermi theory (although it is sometimes interpreted that way) but an important statement about the true quantum-mechanical situation. For finite $Z$ one can show, using the Lieb–Thirring inequalities [a12] and the Lieb–Oxford inequality [a6], that $E ^ { \text{TF} } ( N )$, with a modified $\gamma$, gives a lower bound to $E ^ { \text{Q} } ( N )$.

Several "improvements" to Thomas–Fermi theory have been proposed, but none have a fundamental significance in the sense of being "exact" in the $Z \rightarrow \infty$ limit. The von Weizsäcker correction consists in adding a term \begin{equation*} \text{(const)} \int _ { {\bf R} ^ { 3 } } | \nabla \sqrt { \rho ( x ) } | ^ { 2 } d x \end{equation*} to ${\cal E} ( \rho )$. This preserves the convexity of ${\cal E} ( \rho )$ and adds $(\text{const})Z ^ { 2 }$ to $E ^ { \text{TF} } ( N )$ when $Z$ is large. It also has the effect that the range of $N$ for which there is a minimizing $\rho$ is extend from $[ 0 , Z ]$ to $[ 0 , Z + ( \text { const } ) K ]$. Another correction, the Dirac exchange energy, is to add \begin{equation*} - ( \text {const} ) \int _ { {\bf R} ^ { 3 } } \rho ( x ) ^ { 4 / 3 } d x \end{equation*} to ${\cal E} ( \rho )$. This spoils the convexity but not the range $[ 0 , Z ]$ for which a minimizing $\rho$ exists, cf. [a7] for both of these corrections. When a uniform external magnetic field $B$ is present, the operator $- \Delta$ in $H$ is replaced by \begin{equation*} | i \nabla + A ( x ) | ^ { 2 } + \sigma . B ( x ), \end{equation*} with $\operatorname{curl}A = B$ and $\sigma$ denoting the Pauli spin matrices (cf. also Pauli matrices). This leads to a modified Thomas–Fermi theory that is asymptotically exact as $Z \rightarrow \infty$, but the theory depends on the manner in which $B$ varies with $Z$. There are five distinct regimes and theories: $B \ll Z ^ { 4 / 3 }$, $B \sim Z ^ { 4 / 3 }$, $Z ^ { 4 / 3 } \ll B \ll Z ^ { 3 }$, $B \sim Z ^ { 3 }$, and $B \gg Z ^ { 3 }$. These theories [a8], [a9] are relevant for neutron stars. Another class of Thomas–Fermi theories with magnetic fields is relevant for electrons confined to two-dimensional geometries (quantum dots) [a10]. In this case there are three regimes. A convenient review is [a11]. Still another modification of Thomas–Fermi theory is its extension from a theory of the ground states of atoms and molecules (which corresponds to zero temperature) to a theory of positive temperature states of large systems such as stars (cf. [a5], [a14]).

References

'
[a1] R. Benguria, E.H. Lieb, "The positivity of the pressure in Thomas–Fermi theory" Comm. Math. Phys. , 63 (1978) pp. 193–218 ((Errata: 71 (1980), 94))
[a2] E. Fermi, "Un metodo statistico per la determinazione di alcune priorieta dell'atome" Rend. Accad. Naz. Lincei , 6 (1927) pp. 602–607
[a3] E.H. Lieb, "Thomas–Fermi and related theories of atoms and molecules" Rev. Mod. Phys. , 53 (1981) pp. 603–641 ((Errata: 54 (1982), 311))
[a4] E. Teller, "On the stability of molecules in Thomas–Fermi theory" Rev. Mod. Phys. , 34 (1962) pp. 627–631
[a5] J. Messer, "Temperature dependent Thomas–Fermi theory" , Lecture Notes Physics , 147 , Springer (1981)
[a6] E.H. Lieb, S. Oxford, "An improved lower bound on the indirect Coulomb energy" Internat. J. Quant. Chem. , 19 (1981) pp. 427–439
[a7] E.H. Lieb, B. Simon, "The Thomas–Fermi theory of atoms, molecules and solids" Adv. Math. , 23 (1977) pp. 22–116
[a8] E.H. Lieb, J.P. Solovej, J. Yngvason, "Asymptotics of heavy atoms in high magnetic fields: I. lowest Landau band region" Commun. Pure Appl. Math. , 47 (1994) pp. 513–591
[a9] E.H. Lieb, J.P. Solovej, J. Yngvason, "Asymptotics of heavy atoms in high magnetic fields: II. semiclassical regions" Comm. Math. Phys. , 161 (1994) pp. 77–124
[a10] E.H. Lieb, J.P. Solovej, J. Yngvason, "Ground states of large quantum dots in magnetic fields" Phys. Rev. B , 51 (1995) pp. 10646–10665
[a11] E.H. Lieb, J.P. Solovej, J. Yngvason, "Asymptotics of natural and artificial atoms in strong magnetic fields" W. Thirring (ed.) , The stability of matter: from atoms to stars, selecta of E.H. Lieb , Springer (1997) pp. 145–167 (Edition: Second)
[a12] E.H. Lieb, W. Thirring, "Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities" E. Lieb (ed.) B. Simon (ed.) A. Wightman (ed.) , Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann , Princeton Univ. Press (1976) pp. 269–303 ((See also: W. Thirring (ed.), The stability of matter: from the atoms to stars, Selecta of E.H. Lieb, Springer, 1977))
[a13] L.H. Thomas, "The calculation of atomic fields" Proc. Cambridge Philos. Soc. , 23 (1927) pp. 542–548
[a14] W. Thirring, "A course in mathematical physics" , 4 , Springer (1983) pp. 209–277

Elliott H. Lieb

Copyright to this article is held by Elliott Lieb.

How to Cite This Entry:
Thomas-Fermi theory. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Thomas-Fermi_theory&oldid=55479